SPHERE BUNDLES OVER SPHERES AS LOOP SPACES MOD p

JOHN EWING

We say that a space X has some property mod p if the localization of X at p has the property. Recent work of Curtis and Mislin [5] and Stasheff [11] has investigated when a sphere bundle over a sphere is an H-space mod p. Of particular importance are the spaces $B_n(p)$ described in [8] which occur in the mod p factorization of Lie groups [6], [8]. In [11] Stasheff has shown that most $B_n(p)$ are H-spaces mod p for p an odd prime and the question arises as to when $B_n(p)$ can be of the homotopy type of a loop space mod p. The main result of this note is to give necessary conditions on n and p for this to be true. The conclusion is that relatively few $B_n(p)$ are of the homotopy type of a loop space mod p.

For p an odd prime and n a positive integer the space $B_n(p)$ is an S^{2n+1} bundle over $S^{2n+1+2(p-1)}$ classified by the generator of the p-primary part of $\pi_{2n+2(p-1)}(S^{2n+1})$. By [8], $H^*(B_n(p); \mathbb{Z}/p)$ is an exterior algebra on generators x and y, where deg x = 2n + 1, deg y = 2n + 1 + 2(p - 1) and $\mathcal{O}^1 x = y$. Work of Stasheff [11] has shown that for most pairs (n, p), $B_n(p)$ is an H-space mod p. In particular the following theorem and corollary of [11] are obtained.

THEOREM 1. Let p be an odd prime and let n be a positive integer. If 2(4n + 2p) < 2pn + 2p - 2, then $B_n(p)$ is an H-space mod p.

COROLLARY 2. If p is an odd prime greater than 5, then $B_n(p)$ is an H-space mod p for all positive integers n. If p = 5, then $B_n(p)$ is an H-space mod p for n > 6.

Although most $B_n(p)$ are *H*-spaces mod p, the following theorem and corollary show that relatively few are of the homotopy type of a loop space mod p.

THEOREM 3. Suppose p is an odd prime, n is a positive integer and $B_n(p)$ is of the homotopy type of a loop space mod p. If p > 3, then the following two conditions must be satisfied:

(i) $2(p-1) \equiv 0 \mod n+1$

(ii) $p^2 - 1 \equiv 0 \mod p + n$.

If p = 3, then n = 1 or 5.

COROLLARY 4. Suppose p is an odd prime and n > 1. If $B_n(p)$ is of the homotopy type of a loop space mod p, then $n^2 - n - 1 \ge p$.

Received September 14, 1972.