SPHERE BUNDLES OVER SPHERES AS LOOP SPACES MOD p

JOHN EWING

We say that a space X has some property $\bmod p$ if the localization of X at p has the property. Recent work of Curtis and Mislin [5] and Stasheff [11] has investigated when a sphere bundle over a sphere is an H-space mod p. Of particular importance are the spaces $B_{n}(p)$ described in [8] which occur in the $\bmod p$ factorization of Lie groups [6], [8]. In [11] Stasheff has shown that most $B_{n}(p)$ are H-spaces $\bmod p$ for p an odd prime and the question arises as to when $B_{n}(p)$ can be of the homotopy type of a loop space $\bmod p$. The main result of this note is to give necessary conditions on n and p for this to be true. The conclusion is that relatively few $B_{n}(p)$ are of the homotopy type of a loop space $\bmod p$.

For p an odd prime and n a positive integer the space $B_{n}(p)$ is an $S^{2 n+1}$ bundle over $S^{2 n+1+2(p-1)}$ classified by the generator of the p-primary part of $\pi_{2 n+2(p-1)}\left(S^{2 n+1}\right)$. By [8], $H^{*}\left(B_{n}(p) ; Z / p\right)$ is an exterior algebra on generators x and y, where $\operatorname{deg} x=2 n+1, \operatorname{deg} y=2 n+1+2(p-1)$ and $\mathcal{P}^{1} x=y$. Work of Stasheff [11] has shown that for most pairs $(n, p), B_{n}(p)$ is an H-space $\bmod p$. In particular the following theorem and corollary of [11] are obtained.

Theorem 1. Let p be an odd prime and let n be a positive integer. If $2(4 n+2 p)<2 p n+2 p-2$, then $B_{n}(p)$ is an H-space $\bmod p$.

Corollary 2. If p is an odd prime greater than 5 , then $B_{n}(p)$ is an H-space $\bmod p$ for all positive integers n. If $p=5$, then $B_{n}(p)$ is an H-space $\bmod p$ for $n>6$.

Although most $B_{n}(p)$ are H-spaces mod p, the following theorem and corollary show that relatively few are of the homotopy type of a loop space $\bmod p$.

Theorem 3. Suppose p is an odd prime, n is a positive integer and $B_{n}(p)$ is of the homotopy type of a loop space $\bmod p$. If $p>3$, then the following two conditions must be satisfied:
(i) $2(p-1) \equiv 0 \bmod n+1$
(ii) $p^{2}-1 \equiv 0 \bmod p+n$.

If $p=3$, then $n=1$ or 5 .
Corollary 4. Suppose p is an odd prime and $n>1$. If $B_{n}(p)$ is of the homotopy type of a loop space $\bmod p$, then $n^{2}-n-1 \geq p$.

Received September 14, 1972.

