## A CONTINUED FRACTION OF CARLITZ

M. D. HIRSCHHORN

Let

$$
(x)_{n}=1-x^{n}, \quad(x)_{n}!=(x)_{1}(x)_{2} \cdots(x)_{n} .
$$

The main result of this note is that

$$
1+a x+\frac{a b x^{2}}{1+a x^{3}+} \cdots \frac{a b x^{2 n}}{1+a x^{2 n+1}}=\frac{P_{n}(a, b, x)}{Q_{n}(a, b, x)},
$$

where

$$
\begin{align*}
& P_{n}(a, b, x)=\sum_{r=0}^{n+1} a^{r} x^{r^{2}} \sum_{s=0}^{\min (r, n+1-r)} b^{s} x^{s^{2}} \frac{\left(x^{2}\right)_{n+1-s}!}{\left(x^{2}\right)_{s}!\left(x^{2}\right)_{r-s}!\left(x^{2}\right)_{n+1-r-s}!},  \tag{1}\\
& Q_{n}(a, b, x)=\sum_{r=0}^{n} a^{r} x^{r^{2}+2 r} \sum_{s=0}^{\min (r, n-r)} b^{s} x^{s^{2}} \frac{\left(x^{2}\right)_{n-s}!}{\left(x^{2}\right)_{s}!\left(x^{2}\right)_{r-s}!\left(x^{2}\right)_{n-r-s}!}
\end{align*}
$$

If we take $|x|<1$, let $n \rightarrow \infty$, and use the well-known identity [2; Theorem 348], [3; Art. 246]

$$
(1+c x)\left(1+c x^{2}\right) \cdots\left(1+c x^{r}\right)=\sum_{s=0}^{r} c^{s} x^{\frac{1}{s}(s+1)} \frac{(x)_{r}!}{(x)_{s}!(x)_{r-s}!}
$$

with $x^{2}$ for $x$ and $b / x$ for $c$, then we obtain the following result of Carlitz [1; (10)], namely,
$1+a x+\frac{a b x^{2}}{1+a x^{3}+} \frac{a b x^{4}}{1+a x^{5}+} \cdots$

$$
\begin{aligned}
= & \sum_{r=0}^{\infty} a^{r} x^{r^{2}} \sum_{s=0}^{r} b^{s} \frac{x^{s^{2}}}{\left(x^{2}\right)_{s}!\left(x^{2}\right)_{r-s}!} / \sum_{r=0}^{\infty} a^{r} x^{r^{2}+2 r} \sum_{s=0}^{r} b^{s} \frac{x^{s}}{\left(x^{2}\right)_{s}!\left(x^{2}\right)_{r-s}!} \\
= & \sum_{r=0}^{\infty} a^{r} x^{r^{2}} \frac{(1+b x) \cdots\left(1+b x^{2 r-1}\right)}{\left(x^{2}\right)_{r}!} \\
& / \sum_{r=0}^{\infty} a^{r} x^{r^{2}+2 r} \frac{(1+b x)^{\prime} \cdots\left(1+b x^{2 r-1}\right)}{\left(x^{2}\right)_{r}!} .
\end{aligned}
$$

We shall require the following result on partitions [3; Art. 241], namely,

$$
\sum_{k} p(k, r, n) x^{k}=\frac{(x)_{r+n}!}{(x)_{r}!(x)_{n}!}
$$

Received September 29, 1972. Revisions received November 6, 1972.

