A BOUND FOR THE FIRST OCCURRENCE OF THREE CONSECUTIVE INTEGERS WITH EQUAL QUADRATIC CHARACTER

RICHARD H. HUDSON

1. Introduction and summary. Throughout k will be an integer greater than or equal to 2 and p a prime congruent to $1(\bmod k)$. Let $C_{k}(p)$ denote the proper subgroup of the multiplicative group ($\bmod p$) consisting of the k-th powers $(\bmod p)$. The $k-1$ nonzero cosets formed with respect to $C_{k}(p)$ are called classes of k-th power non-residues and form with $C_{k}(p)$ a cyclic group of order k. Throughout S will denote the maximum number of consecutive elements in any of the k cosets.

Due to a well-known theorem of Brauer [1] for each positive integer m and sufficiently large p there exist a positive integer r and k-th power Dirichlet character modulo p such that

$$
\begin{equation*}
\chi(r)=\chi(r+1)=\cdots=\chi(r+m-1)=1 \tag{1.1}
\end{equation*}
$$

D. H. Lehmer and Emma Lehmer [7] denoted by $r(k, m, p)$ the smallest positive integer r satisfying (1.1). The finite number of primes for which r does not exist are called exceptional primes; all other primes are called non-exceptional. $\Lambda(k, m)$ is defined to be the least upper bound of $r(k, m, p)$, where the supremum is taken over all non-exceptional primes.

Jordan [6] weakened (1.1) by requiring only that

$$
\begin{equation*}
\chi(a)=\chi(a+1)=\cdots=\chi(a+m-1) \tag{1.2}
\end{equation*}
$$

so that $a, \cdots, a+m-1$ are allowed to belong either to $C_{k}(p)$ or to exactly one of the $k-1$ classes of k-th power non-residues. Letting $a(k, m, p)$ be the smallest positive integer a satisfying (1.2), Jordan defined $\Lambda^{*}(k, m)$ to be the least upper bound of $a(k, m, p)$, where the supremum again is taken over all non-exceptional primes.

Using the method of Lehmer and Lehmer [7] we see that it is easy to show $\Lambda(2,3)=\infty$. In fact by preassigning character values for the positive integers as

$$
\chi(n)=\left(\frac{n}{3}\right)=\left\{\begin{array}{rlll}
1 & \text { if } & n \equiv 1 & (\bmod 3) \tag{1.3}\\
-1 & \text { if } & n \equiv-1 & (\bmod 3)
\end{array}\right.
$$

and $\chi(3)=1$ or -1 we obtain two assignments of character values which lead to an indefinite postponement of three consecutive quadratic residues and three consecutive quadratic non-residues. In view of the well-known theorem of Kummer in [4; Theorem 152] it is clear that for each fixed positive integer n

Received July 27, 1972.

