SOME CONTINUED FRACTION FORMULAS

L. CARLITZ

1. Put

$$
\begin{gathered}
(q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right), \quad(q)_{0}=1, \\
{\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}=\left[\begin{array}{c}
n \\
n-k
\end{array}\right] .}
\end{gathered}
$$

Hirschhorn [7] has proved that

$$
\begin{equation*}
1+\frac{a q}{1+} \frac{a q^{2}}{1+} \cdots \frac{a q^{n}}{1}=\frac{P_{n}(a, q)}{Q_{n}(a, q)}, \tag{1.1}
\end{equation*}
$$

where

$$
P_{n}(a, q)=\sum_{2 r \leq n+1}\left[\begin{array}{c}
n-r+1 \tag{1.2}\\
r
\end{array}\right] a^{r} q^{r^{2}}
$$

and

$$
Q_{n}(a, q)=\sum_{2 r \leq n}\left[\begin{array}{c}
n-r \tag{1.3}\\
r
\end{array}\right] a^{r} q^{r(r+1)}
$$

If $n \rightarrow \infty$ and $|q|<1$, it is evident that (1.1) becomes the well-known result [6; Chapter 19]

$$
\begin{equation*}
1+\frac{a q}{1+} \frac{a q^{2}}{1+} \cdots=\sum_{n=0}^{\infty} \frac{a^{r} q^{r^{2}}}{(q)_{r}} / \sum_{r=0}^{\infty} \frac{a^{r} q^{r(r+1)}}{(q)_{r}} \tag{1.4}
\end{equation*}
$$

It is also clear from (1.2) and (1.3) that

$$
\begin{equation*}
Q_{n}(a, q)=P_{n-1}(a q, q) \tag{1.5}
\end{equation*}
$$

Moreover

$$
\left\{\begin{array}{l}
P_{r}(a, q)=P_{r-1}(a, q)+a q^{r} P_{r-2}(a, q) \tag{1.6}\\
Q_{r}(a, q)=Q_{r-1}(a, q)+a q^{r} P_{r-2}(a, q)
\end{array}\right.
$$

for $r \geq 2$.
2. In view of (1.6) it may be of interest to consider finite continued fractions suggested by other sets of polynomials satisfying recurrences of the second order. A particularly simple set that has received a good deal of attention is defined by

Received September 12, 1972. The author was supported in part by NSF grant GP17031.

