FACTORIZATIONS OF BOUNDED HOLOMORPHIC FUNCTIONS

P. R. AHERN AND WALTER RUDIN

1. Introduction. For a bounded holomorphic function f in the open unit disc we have a unique factorization f = Bg, where B is a Blaschke product and g is never 0. The Blaschke product B is a product of "irreducible" factors corresponding to the zeros of f, and g is uniquely determined by a certain measure on the unit circle. In this paper we consider bounded holomorphic functions in the polydisc U^n . In Section 2 we show that every bounded holomorphic function in U^n is uniquely determined by its zero set and a certain boundary measure. (We show that this holds for a larger class of functions.) In Section 3 we show that any bounded holomorphic function f in U^n can be factored $f = h \cdot \prod_{i=1}^{\infty} g_i$, where h is never 0 and each g_i is "irreducible" in a sense defined below. Unfortunately, this factorization need not be unique even if f is an inner function (see definitions below). Another difference between this and the one-variable case is that the irreducible factors g_i may have non-zero boundary measures associated with them. In the fourth section we construct examples of functions with non-unique factorizations.

We use the notation of [2]. \mathscr{C} denotes the complex numbers, U the open unit disc in \mathscr{C} and T the boundary of U. Let n be a positive integer. If μ is a real Borel measure on $T^n \subseteq C^n$, we denote its Poisson integral by $P[d\mu]$ and its Fourier transform by $\hat{\mu}$. We say $\mu \in RP(T^n)$ if $P[d\mu] \in RP(U^n)$, the space of real parts of functions holomorphic in U^n . This happens if and only if $\hat{\mu} \equiv 0$ outside of $Z_+^n \cup Z_-^n$, where $k = (k_1, \dots, k_n) \in Z_+^n$ if $k_i \geq 0$ for all iand $Z_-^n = -Z_+^n$.

If f is holomorphic in U^n , we say $f \in H^{\infty}(U^n)$ if it is bounded in U^n , we say $f \in N(U^n)$ if $\log^+ |f|$ has an n-harmonic majorant in U^n , and we say $f \in A(U^n)$ if f is continuous on \overline{U}^n ; f_r denotes the function whose value at z is f(rz). If $f \in N(U^n)$, then $\log |f|$ has a *least* n-harmonic majorant denoted by u[f]. If $f \in N(U^n)$, then $\lim_{r\to 1} f(rz) = f^*(z)$ exists a.e. with respect to Haar measure m_n on T^n . If $g \in H^{\infty}(U^n)$ and $|g^*| = 1$ a.e., we say g is inner. If g is inner and u[g] = 0, we say g is good.

2. An observation about the Nevanlinna class.

2.1. Every $f \in N(U^n)$, $f \neq 0$, determines two pieces of data; the first, obviously, is its zero set (including multiplicities), and the second is what we shall call its boundary measure β_f . This is a real Borel measure on T^n which may be defined

Received June 19, 1972. Revisions received July 22, 1972. This research was partially supported by N.S.F. grant GP-24182.