PERTURBATION OF NON-NORMAL ISOMETRIES

EVANGELOS K. IFANTIS

1. Introduction. Let H be a separable Hilbert space. Denote by ker U the null space of an operator U and by null U the dimension of ker U. The following theorem will be proved.

THEOREM. If U is a non-normal isometry on H, if S is a strict contraction, ||S|| < 1, and if K is compact, then ker $(U^* - S - K) \neq 0$; if null $U^* < \infty$, then null $(U^* - S - K) < \infty$.

In case S is a scalar (of modulus strictly less than 1) the result implies Stampfli's theorem proved in [4] and generalized in [1].

The strict inequality ||S|| < 1 cannot be weakened to $||S|| \le 1$; indeed if U is the unilateral shift and if S = 1 and K = 0, then ker $(U^* - S - K) =$ ker $(U^* - 1) = 0$.

2. Proof of the theorem. Observe that $U^* - S - K = U^*(1 - US - UK)$. Since ||US|| < 1, it follows that 1 - US is invertible; since UK is compact, the Fredholm alternative implies that either ker $(1 - US - UK) \neq 0$ (In this case the first assertion of the theorem is obviously true.) or 1 - US - UK is invertible (In this case the first assertion of the theorem follows from the fact that ker $U^* \neq 0$.).

The second assertion is a consequence of the inequality null $(AB) \leq \text{null } A + \text{null } B$, with $A = U^*$ and B = 1 - US - UK. Indeed, by assumption null A is finite; since ker $B = \text{ker } (1 - US)(1 - (1 - US)^{-1}UK) = \text{ker } (1 - (1 - US)^{-1}UK)$ is the eigenpace of the eigenvalue 1 for the compact operator $(1 - US)^{-1}UK$, it follows that null B also is finite.

COROLLARY. If every element in the null space of $U^* - S - K$ cannot be orthogonal to the null space of U^* , then null $U^* = \text{null } (U^* - S - K)$.

Proof. In this case the operator $1 - (1 - US)^{-1}UK$ is invertible. In fact since $(1 - US)^{-1}UK$ is compact, non-invertibility means that there exists at least one element f in H such that

(1)
$$(1 - (1 - US)^{-1}UK)f = 0,$$

where f belongs to the null space of $U^* - S - K$. But from (1) it follows that U(S + K)f = f and that $(f, f_0) = 0$ for every f_0 in the null space of U^* ; this contradicts the assumption. Therefore null $(U^* - S - K) =$ null $(U^*(1 - US)(1 - (1 - US)^{-1}UK)) =$ null U^* .

Received June 5, 1972. Revisions received July 5, 1972.