ORIENTABILITY OF BUNDLES
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1. Introduction. The object of this note is to explore the conditions under
which a vector bundle is orientable for a generalized cohomology theory defined
by a ring spectrum. We also discuss the question of how many orientations
there are. The problem is reduced to the existence and enumeration of cross-
sections of a fibration associated with the original bundle. We call this fibration
the determinant fibration by analogy with the determinant bundle that arises
in connection with ordinary orientability.
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2. Classifying orientations. Let p : E — B be a real vector bundle of dimen-
sion n over a connected CW-complex B. We assume that either B is finite or
the bundle is numerable. We will let j be the inclusion of a fiber. If his a
generalized cohomology theory, then contained in 2*(R", B" — 0) is the subset G
of the suspensions of the units in 4° (point). The bundle is said to be orientable
for h if there exists an element U ¢ A"(E, E°) such that j*U ¢ G. U is referred to
as an orientation or a Thom class. In this case we have the Dold-Thom iso-
morphism theorem.

TrEOREM 1. [2; 41]. If E s orientable with orientation U, then U generates
h(E, E°) as a free h(B)-module.

We wish to classify orientations of E under the assumption that one exists.
Our first observation is the following. There is a one-to-one correspondence
between orientations and units in 2°(B). For if ¢ is a unit and U is an orienta-
tion, then j*(tU) € G and so tU is an orientation. If U and V are orientations,
then since each generates, V = {U for some t and U = t'V for some ¢’ and clearly
W =1tt=1

CoroLLARY 2. Let B be a connected complex and let p, : {x} — B be the inclu-
ston of a point. Then the units of h°(B) are the inverse images under p* of the
units in h° (point).

Proof. Taken = 0.

Now we make the assumption that h is determined as in [5] by a spectrum @

which in fact is a loop spectrum. This is a sequence of basepointed spaces &; and
homotopy equivalences ¢, : @ — Q@;,; . Then h'(X) = [X, @, if X has a
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