UP-DOWN SEQUENCES

L. CARLITZ AND RICHARD SCOVILLE

1. Introduction. We recall that an up-down permutation of $Z_{n}=$ $\{1,2, \cdots, n\}$ is a permutation $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ such that

$$
a_{1}<a_{2}, a_{2}>a_{3}, a_{3}<a_{4}, a_{4}>a_{5}, \cdots
$$

Similarly a down-up permutation is one in which

$$
a_{1}>a_{2}, a_{2}<a_{3}, a_{3}>a_{4}, a_{4}<a_{5}, \cdots
$$

If ($a_{1}, a_{2}, \cdots, a_{n}$) is an up-down permutation and

$$
b_{i}=n-a_{i}+1, \quad i=1,2, \cdots, n,
$$

then $\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ is a down-up permutation. Hence, for $n>1$ the number of up-down permutations is equal to the number of down-up permutations.

Let $A(n)$ denote the number of up-down permutations of Z_{n}. It is known [3; 105-112] that

$$
\begin{align*}
\sum_{n=0}^{\infty} A(2 n) \frac{x^{2 n}}{(2 n)!}=\sec x, \sum_{n=0}^{\infty} A(2 n+1) \frac{x^{2 n+1}}{(2 n+1)!} & =\tan x \tag{1.1}
\end{align*},
$$

The present paper is concerned with the following problem. Let $s_{1}, s_{2}, \cdots, s_{n}$ denote nonnegative integers and put

$$
\begin{equation*}
N=s_{1}+s_{2}+\cdots+s_{n} \tag{1.2}
\end{equation*}
$$

We consider sequences

$$
\begin{equation*}
\sigma=\left(a_{1}, a_{2}, \cdots, a_{N}\right) \tag{1.3}
\end{equation*}
$$

of length N, where $a_{i} \varepsilon Z_{n}$ and the element j occurs exactly s_{i} times. We call [$s_{1}, s_{2}, \cdots, s_{n}$] the specification of σ. We shall say that σ is an up-down sequence provided

$$
\begin{equation*}
a_{1}<a_{2}, a_{2}>a_{3}, a_{3}<a_{4}, a_{4}>a_{5}, \cdots \tag{1.4}
\end{equation*}
$$

and similarly for down-up sequences.
Corresponding to the up-down sequence σ defined by (1.3) we have the down-up sequence

$$
\begin{equation*}
\sigma^{\prime}=\left(b_{1}, b_{2}, \cdots, b_{N}\right) \tag{1.5}
\end{equation*}
$$

where
Received March 10, 1972. The first author was supported in part by NSF Grant GP-17031.

