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Let U denote the polydisk: [zl[ < 1, [z2[ < 1, [zn[ , 1 in Cn, and T"
its distinguished boundary: [zl[ [z2[ [zn[ 1. If is a positive
measure on T", L(d) will denote its L spaces and H(d), 1 <_ p ,< , will
denote the closure, in L(d), of the polynomials in zl, z,. The Poisson
integral of dg is written

P[u] f. P(sl- 01)... P(s,- 8) dv

where

P(0) P,(0) (1 rs)/(1 -t- r 2r cos 0).

Let m and m: denote normalized Lebesgue measure on T and T respectively:

dm= dt/(2r) dm ds dt/(2),
and let B(z, w) be an inner function, i.e., let B(z, w) be analytic, with [B(z, w)[ < 1
in Us, and [B(e’, e")[ 1 a.e. This paper is a study of the subspace

M+/- Hs(dm) ( BH(dm)

and of certain operators on Mx.
To be more specific, the function Re (1 - B)/(1 B) is positive and harmonic

in Us and is, therefore, P[] for some (singular) measure g on T. We determine
explicitly (in Section 3 below) a unitary operator which maps M onto Hs(d).
In Section 4 we consider the operators $1, S:"M + Mx given by

Sd PzI, S:I PwI,

where I e M" and where P is the projection of H:(dm:) onto M+/-. Sections 1
and 2 are devoted to the special type of measure representing (1 B)(1 B) -1

and to its H2 space.
The one variable analogue of this work, i.e., the case in which B is a function

of one variable and M+/- is replaced by HS(dm) ( BH(dm), was done in my
recent paper [3]. The main results of that paper generalize formally to two
variables as we shall see. Most of the applications of those results (for example,
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