SOME STAR-INVARIANT SUBSPACES IN TWO VARIABLES

DOUGLAS N. CLARK

Let U^{n} denote the polydisk: $\left|z_{1}\right|<1,\left|z_{2}\right|<1, \cdots,\left|z_{n}\right|<1$ in C^{n}, and T^{n} its distinguished boundary: $\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{n}\right|=1$. If μ is a positive measure on $T^{n}, L^{p}(d \mu)$ will denote its L^{p} spaces and $H^{p}(d \mu), 1 \leq p<\infty$, will denote the closure, in $L^{p}(d \mu)$, of the polynomials in z_{1}, \cdots, z_{n}. The Poisson integral of $d \mu$ is written

$$
P[\mu]=\int_{T^{n}} P\left(s_{1}-\theta_{1}\right) \cdots P\left(s_{n}-\theta_{n}\right) d \mu
$$

where

$$
P(\theta)=P_{r}(\theta)=\left(1-r^{2}\right) /\left(1+r^{2}-2 r \cos \theta\right)
$$

Let m and m_{2} denote normalized Lebesgue measure on T and T^{2} respectively:

$$
d m=d t /(2 \pi), \quad d m_{2}=d s d t /(2 \pi)^{2}
$$

and let $B(z, w)$ be an inner function, i.e., let $B(z, w)$ be analytic, with $|B(z, w)|<1$ in U^{2}, and $\left|B\left(e^{i s}, e^{i t}\right)\right|=1$ a.e. This paper is a study of the subspace

$$
M^{\perp}=H^{2}\left(d m_{2}\right) \ominus B H^{2}\left(d m_{2}\right)
$$

and of certain operators on M^{\perp}.
To be more specific, the function $\operatorname{Re}(1+B) /(1-B)$ is positive and harmonic in U^{2} and is, therefore, $P[\mu]$ for some (singular) measure μ on T^{2}. We determine explicitly (in Section 3 below) a unitary operator \mathfrak{U} which maps M^{\perp} onto $H^{2}(d \mu)$. In Section 4 we consider the operators $S_{1}, S_{2}: M^{\perp} \rightarrow M^{\perp}$ given by

$$
S_{1} f=P z f, \quad S_{2} f=P w f,
$$

where $f \varepsilon M^{\perp}$ and where P is the projection of $H^{2}\left(d m_{2}\right)$ onto M^{\perp}. Sections 1 and 2 are devoted to the special type of measure representing $(1+B)(1-B)^{-1}$ and to its H^{2} space.

The one variable analogue of this work, i.e., the case in which B is a function of one variable and M^{\perp} is replaced by $H^{2}(d m) \ominus B H^{2}(d m)$, was done in my recent paper [3]. The main results of that paper generalize formally to two variables as we shall see. Most of the applications of those results (for example,

Received March 20, 1972. Revision received April 20, 1972. Partially supported by NSF Grant GP 29011.

