PRIMITIVE NUMBERS FOR A CLASS OF MULTIPLICATIVE FUNCTIONS

MAY BERESIN AND EUGENE LEVINE

1. Introduction. Letting

$$
\Sigma(n)=\frac{\sigma(n)}{n}=\frac{1}{n} \sum_{d \mid n} d,
$$

an integer n is called abundant if $\Sigma(n) \geq 2$. The integer n is called primitive or primitive abundant if n is abundant but no proper divisor of n is abundant. Letting $\nu(n)=\sum_{p \mid n} 1$ be the number of distinct prime divisors of n, Dickson has shown [1] the following.

Theorem 1. For each integer k there are at most finitely many odd primitive numbers n with $\nu(n)=k$.

In [2] H. N. Shapiro enlarges upon the notions of abundant and primitive numbers. Namely, for $\eta>0$ an integer n is called η-abundant if $\Sigma(n) \geq \eta$, and n is called η-primitive if it is η-abundant but no proper divisor is η-abundant. In this setting an extension of Theorem 1, as found in [2], provides the next theorem.

Theorem 2. For η rational there are at most finitely many η-primitive numbers n with $\nu(n)=k$ and such that n is relatively prime to the numerator of η (in reduced form). For η irrational there are altogether only finitely many η-primitive numbers with $\nu(n)=k$.

In proving Theorem 2 it is shown in [2] that a necessary condition for the existence of infinitely many η-primitive numbers with $\nu(n)=k$ is that there exist integers a and b such that

$$
\left\{\begin{array}{l}
\eta=\frac{\sigma(a)}{a} \cdot \frac{b}{\phi(b)} \text { with }(a, b)=1 \text { and } b>1 \tag{1}\\
\nu(a)+\nu(b)<k
\end{array}\right.
$$

where ϕ is the Euler function.
In a more recent paper by Shapiro [3] it is shown that (1) is also sufficient, which yields the following theorem.

Theorem 3. A necessary and sufficient condition that there be infinitely many η-primitive numbers n with $\nu(n)=k$ is that there exist integers a and b satisfying (1).

Here we make use of the methods of [3] to produce a generalization of Theorem
Received March 16, 1972.

