A THEORY OF INTEGRATION

B. S. THOMSON

This paper presents an exposition of the ideas fundamental to a theory of integration which has been investigated by R. Henstock [3], [4] and [5] and later by E. J. McShane [6]. The emphasis of these authors has been on a Riemann-type definition of an integral which possesses Lebesgue-type limit theorems and in particular on the problems of defining such an integral for vector-valued functions.

There is an underlying simplicity in this area which is obscured by a Riemann-oriented approach. We present here, in what seems to be the simplest kind of setting, the basic ideas of that part of the theory which interacts with the measure-theoretic tradition. The generalized versions of Henstock and McShane can then be considered to expand this setting. The paper concludes with a brief application of the theory to the familiar problem of integration in locally compact spaces.

1. Basic theory. Throughout the paper N will denote the natural numbers, \mathbf{R} the real numbers, \mathbf{R}_+ the nonnegative real numbers, $\mathbf{\bar{R}}_+$ the extended nonnegative real numbers and $\mathbf{\bar{R}}_+^T$ the collection of all functions defined on a set T with values in $\mathbf{\bar{R}}_+$.

Let T be a set and I a collection of pairs (I, x) where $x \in T$ and $I \subseteq T$. A subset D of I is said to be *disjointed* if the corresponding collection $\{I: (I, x) \in D\}$ is disjointed; a finite disjointed subset D of I is called a *division* and we write $\sigma(D) = \bigcup \{I: (I, x) \in D\}$ and call such sets $\sigma(D)$ elementary sets. The family of all elementary sets is denoted \mathfrak{E} .

If $X \subseteq T$, $S \subseteq I$ and $\mathfrak A$ is a family of subsets of I, we define the following special sets.

$$S(X) = \{(I, x) \in S : I \subseteq X\}$$

$$S[X] = \{(I, x) \in S : x \in X\}$$

$$\mathfrak{A}(X) = \{S(X) : S \in \mathfrak{A}\}$$

$$\mathfrak{A}[X] = \{S[X] : S \in \mathfrak{A}\}$$

DEFINITION 1. The ordered triple (T, \mathfrak{A}, I) is said to be a *division system* if \mathfrak{A} is a collection of subsets of I directed downwards by set inclusion, i.e., if S_1 , $S_2 \in \mathfrak{A}$, then there is an $S \in \mathfrak{A}$ such that $S \subseteq S_1 \cap S_2$.

Definition 2. A division system (T, \mathfrak{A}, I) is said to be *fully decomposable* (respectively decomposable) if for every family (respectively countable family)

Received March 10, 1972. Revision received June 8, 1972.