MATRIX FIELDS OVER FINITE EXTENSIONS OF PRIME FIELDS

J. T. B. BEARD, Jr.

1. Introduction and notation. Let F be a field and let $(F)_{n}$ denote the algebra of all $n \times n$ matrices over F under normal matrix addition and multiplication. Let M be any subring of $(F)_{n}$ such that M itself is a field. Then M is called a matrix field of $(F)_{n}$ or simply a matrix field. In addition, although it is nonstandard, we find it convenient to refer to M as a subfield of the ring $(F)_{n}$. We continue the work begun in [1], and in this paper we are primarily interested in characterizing all subfields of $(F)_{n}$ when F is a finite extension of its prime subfield F_{ν}, p either a prime or zero.

Our notation and language is that of [1] and briefly is as follows. Unless stated otherwise, F denotes an arbitrary field. Polynomials over F are denoted by $f(x), g(x), \cdots$ and the degree of $f(x)$ is denoted by $\operatorname{deg} f(x)$. If $f(x)$ is monic and irreducible over F, we say that $f(x)$ is prime in $F[x]$. Capital letters are used to denote matrices unless otherwise noted, and we will have occasion to use the notation $A=\left|a_{i i}\right|$ also (No confusion will result as determinants are not used.). The usual terminology regarding matrices is used, and we assume the following facts. These are well-known and appear in standard texts on matrix algebra unless otherwise referenced. In particular, we have adopted the notation and language of Perlis [4]. While some of these facts are elementary, we rely on each of them heavily.

Fact 1. Each matrix $A \varepsilon(F)_{n}$ is similar over F to a matrix $C \varepsilon(F)_{n}$ of the form $C=\operatorname{diag}\left|C\left(f_{1}(x)\right), \cdots, C\left(f_{k}(x)\right)\right|$, where $C\left(f_{i}(x)\right)$ denotes the companion matrix of $f_{i}(x) \varepsilon F[x]$ for $1 \leq i \leq k$ and where
(i) $f_{1}(x), \cdots, f_{k}(x)$ are the nontrivial similarity invariants of A,
(ii) $0<\operatorname{deg} f_{i}(x) \leq \operatorname{deg} f_{i+1}(x)$ for $1 \leq i<k$,
(iii) $f_{i}(x) \mid f_{i+1}(x)$ in $F[x]$ for $1 \leq i<k$,
(iv) $f_{k}(x)$ is the minimal polynomial of A over F, and
(v) $f(x)=\prod_{i=1}^{k} f_{i}(x)$ is the characteristic polynomial of A.

We follow Parker and Eaves [3] and refer to the matrix C in Fact 1 as the rational canonical form for A over F.
$\mathrm{F}_{\mathrm{ACt}}$ 2. Given any nonsingular matrix $P_{\varepsilon}(F)_{n}$ the mapping $\phi:(F)_{n} \rightarrow(F)_{n}$ defined by $\phi(A)=P A P^{-1}$ for all $A \varepsilon(F)_{n}$ is a ring automorphism of $(F)_{n}$.

We refer to the mapping ϕ in Fact 2 as a similarity transformation over F. If T is any subset of $(F)_{n}$, then we say that T and $\phi(T)$ are similar over F and that $\phi(T)$ is the conjugate of T by P.

Received November 18, 1971. Revision received April 24, 1972. This research was partially supported by NSF Grant GP-7129. A major portion of this paper is contained in the author's doctoral dissertation directed by Robert M. McConnel, to whom the author wishes to express his sincere gratitude.

