MATRIX FIELDS OVER FINITE EXTENSIONS OF PRIME FIELDS

J. T. B. BEARD, Jr.

1. Introduction and notation. Let F be a field and let $(F)_n$ denote the algebra of all $n \times n$ matrices over F under normal matrix addition and multiplication. Let M be any subring of $(F)_n$ such that M itself is a field. Then M is called a matrix field of $(F)_n$ or simply a matrix field. In addition, although it is non-standard, we find it convenient to refer to M as a subfield of the ring $(F)_n$. We continue the work begun in [1], and in this paper we are primarily interested in characterizing all subfields of $(F)_n$ when F is a finite extension of its prime subfield F_n , p either a prime or zero.

Our notation and language is that of [1] and briefly is as follows. Unless stated otherwise, F denotes an arbitrary field. Polynomials over F are denoted by $f(x), g(x), \cdots$ and the degree of f(x) is denoted by deg f(x). If f(x) is monic and irreducible over F, we say that f(x) is prime in F[x]. Capital letters are used to denote matrices unless otherwise noted, and we will have occasion to use the notation $A = |a_{ij}|$ also (No confusion will result as determinants are not used.). The usual terminology regarding matrices is used, and we assume the following facts. These are well-known and appear in standard texts on matrix algebra unless otherwise referenced. In particular, we have adopted the notation and language of Perlis [4]. While some of these facts are elementary, we rely on each of them heavily.

FACT 1. Each matrix $A \in (F)_n$ is similar over F to a matrix $C \in (F)_n$ of the form $C = \text{diag } |C(f_1(x)), \dots, C(f_k(x))|$, where $C(f_i(x))$ denotes the companion matrix of $f_i(x) \in F[x]$ for $1 \leq i \leq k$ and where

(i) $f_1(x), \dots, f_k(x)$ are the nontrivial similarity invariants of A,

(ii) $0 < \deg f_i(x) \le \deg f_{i+1}(x)$ for $1 \le i < k$,

(iii) $f_i(x) | f_{i+1}(x)$ in F[x] for $1 \le i < k$,

(iv) $f_k(x)$ is the minimal polynomial of A over F, and

(v) $f(x) = \prod_{i=1}^{k} f_i(x)$ is the characteristic polynomial of A.

We follow Parker and Eaves [3] and refer to the matrix C in Fact 1 as the rational canonical form for A over F.

FACT 2. Given any nonsingular matrix $P \in (F)_n$ the mapping $\phi:(F)_n \to (F)_n$ defined by $\phi(A) = PAP^{-1}$ for all $A \in (F)_n$ is a ring automorphism of $(F)_n$.

We refer to the mapping ϕ in Fact 2 as a similarity transformation over F. If T is any subset of $(F)_n$, then we say that T and $\phi(T)$ are similar over F and that $\phi(T)$ is the conjugate of T by P.

Received November 18, 1971. Revision received April 24, 1972. This research was partially supported by NSF Grant GP-7129. A major portion of this paper is contained in the author's doctoral dissertation directed by Robert M. McConnel, to whom the author wishes to express his sincere gratitude.