MATRIX FIELDS OVER PRIME FIELDS

J. T. B. BEARD, JR.

1. Introduction and notation. Let R be a ring with identity and let $(R)_{n}$ denote the complete matrix ring of all $n \times n$ matrices over R under normal matrix addition and multiplication. Let M be a subring of $(R)_{n}$. Then M is called a matrix field of $(R)_{n}$, or simply a matrix field, if and only if M is itself a field. Although it is not standard, we find it convenient to refer to M as a subfield of the ring $(R)_{n}$. We are interested in characterizing all subfields of $(R)_{n}$ and, whenever appropriate, in determining the number of distinct subfields of $(R)_{n}$. The author has succeeded in characterizing all subfields of $(F)_{n}$, where the field F is a finite extension of its prime subfield F_{p}, and has enumerated the distinct subfields of $(G F(q))_{n}$. The results given here are motivated by taking R first as the ring generated by the identity of an arbitrary integral domain D and then by taking R as the quotient field of this ring. In addition to characterizing all subfields of $(Z)_{n},(Q)_{n}$ and $(G F(p))_{n}$, we give constructive techniques for extending matrix fields within these rings.

We emphasize that in all cases we are concerned with finding all subrings of $(R)_{n}$ which are fields and not merely those having the identity I_{n} of $(R)_{n}$ as their own identity. For example, it is easily verified that the subring M of $(Q)_{\mathbf{2}}$ given by

$$
M=\left\{x\left|\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right|: x \varepsilon Q\right\}
$$

is a subfield of $(Q)_{2}$ and has the matrix $\left|\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right|$ as its identity.
2. Subfields of $(Z)_{n}$. In this section we consider subfields of $(R)_{n}$ where R is the ring generated by the identity of an integral domain of characteristic zero. The result over Z is thus a special case of the following theorem.

Theorem 1. Let D be an integral domain having characteristic zero and let R be the subring generated by the identity of D. Then $(R)_{n}$ has no subfields.

Proof. Let F be the quotient field of D and consider R as imbedded in F. Suppose $(R)_{n}$ has a subfield, say M. Then M is a subfield of $(F)_{n}$. Since M is a field, then M has an identity, call it I. There are two cases to consider.

[^0]
[^0]: Received October 18, 1971. Revision received February 4, 1972.
 This research was partially supported by NSF Grant GP-7129. Portions of this paper are included in the author's doctoral dissertation written under the direction of Professor Robert M. McConnel.

