FRÉCHET DISTANCE AND THE UNIFORM CONVERGENCE OF QUASICONFORMAL MAPPINGS

BRUCE PALKA

1. Introduction. It is the purpose of this paper to generalize a classical theorem of Radó [7] concerning the uniform convergence of conformal mappings of the unit disk in the plane to a theorem on the uniform convergence of quasi-conformal mappings in *n*-space. The question of uniform convergence of conformal and quasiconformal maps in the plane has been studied from various points of view by Radó, Courant [1], Markouchevitch [4], Gaier [2] and Wilson [9], and many of their results remain valid in *n*-space. (See [6].) Our specific interest here is the result of Radó.

2. Notation and terminology. We denote by \mathbb{R}^n the *n*-dimensional Euclidean space and by $\overline{\mathbb{R}}^n$, for $n \geq 2$, its one point compactification, $\mathbb{R}^n \cup \{\infty\}$. If $x \in \mathbb{R}^n, x_i$, $i = 1, 2, \dots, n$, will be the *i*-th coordinate of x with respect to a fixed orthonormal basis $\{e_1, \dots, e_n\}$. Stereographic projection from the *n*-sphere induces a natural metric q on $\overline{\mathbb{R}}^n$, the chordal metric, and all topological considerations in this paper refer to $\overline{\mathbb{R}}^n$ and the topology induced on it by q. For a subset A of $\overline{\mathbb{R}}^n$ we denote by \overline{A} , int A, C(A), ∂A and q(A) the closure, interior, complement, boundary and chordal diameter of A respectively. If Aand B are subsets of $\overline{\mathbb{R}}^n$, $A \setminus B$ is the difference set $A \cap C(B)$ and q(A, B) denotes the chordal distance between A and B. If $x \in \mathbb{R}^n$ and r > 0, $\mathbb{B}^n(x, r)$ is the open (Euclidean) ball of radius r with center at x. A domain in $\overline{\mathbb{R}}^n$ is a nonempty, open, connected subset of $\overline{\mathbb{R}}^n$. By a continuum is meant a closed, connected set containing at least two points.

By a path in \bar{R}^n we understand a continuous mapping of a closed interval into \bar{R}^n . If E, F and G are subsets of \bar{R}^n , the notation $\Delta(E, F;G)$ is used for the family of all paths joining E and F in G, i.e., a path $\gamma:[a, b] \to \bar{R}^n$ belongs to $\Delta(E, F;G)$ if and only if one endpoint belongs to E, one endpoint belongs to F and $\gamma(t) \in G$ for a < t < b. If Γ is a family of paths in \bar{R}^n , $F(\Gamma)$ will be the set of all nonnegative, extended real valued, Borel measurable functions ρ on \bar{R}^n such that

$$\int_{\gamma} \rho \ ds \geq 1$$

for each rectifiable $\gamma \in \Gamma$. The *n*-modulus of Γ , written $M(\Gamma)$, is defined by

$$M(\Gamma) = \inf_{F(\Gamma)} \int_{\mathbb{R}^n} \rho^n \, dx$$

Received January 28, 1972. This paper is excerpted from the author's doctoral dissertation at the University of Michigan where he was partially supported by an NDEA Title IV Traineeship.