CONTINUITY OF POSITIVE AND MULTIPLICATIVE FUNCTIONALS

SHU-BUN NG AND SETH WARNER

Our purpose here is to prove a theorem whose consequences show that the validity of certain well-known theorems about Banach and Fréchet locally multiplicatively-convex algebras depends only on the fact that the underlying topology of the algebra is complete and metrizable.

THEOREM 1. Let H be a complete metrizable abelian topological group whose composition is denoted additively, and let s be a continuous function from H into H such that s(0) = 0. If f is a homomorphism from H into the additive group of the topological field R of real numbers such that for some K > 0, $f(x)^2 \leq Kf(s(x))$ for all $x \in H$, then f is continuous.

Proof. Suppose that f is not continuous. Then f is not continuous at zero, so there exist e > 0 and a sequence $(a_k)_{k \ge 0}$ in H such that $\lim a_k = 0$ but $f(a_k) \ge e$ for all $k \ge 0$. Let m be a natural number such that $m \ge K/e$ and let $g: H^2 \to H$ be defined by $g(x_1, x_2) = x_1 + m.s(x_2)$. We define $g_k: H^{k+1} \to H$ recursively as follows: g_0 is the identity function on H and

$$(1) g_k(x_1, \dots, x_{k+1}) = g(x_1, g_{k-1}(x_2, \dots, x_{k+1}))$$

for all $k \geq 1$. Clearly each g_k is continuous. An inductive argument establishes that

$$(2) g_k(x_1, \dots, x_k, 0) = g_{k-1}(x_1, \dots, x_k)$$

for all $k \geq 1$. Let $(V_n)_{n\geq 1}$ be a fundamental system of neighborhoods of zero in H satisfying

$$(3) V_{n+1} + V_{n+1} \subseteq V_n$$

for all $n \geq 1$. We shall define recursively a subsequence $(b_n)_{n\geq 0}$ of $(a_k)_{k\geq 0}$ as follows. Let $b_0=a_0$; if b_0 , \cdots , b_n are defined and if $b_n=a_{k_n}$, let $b_{n+1}=a_r$ where r is the smallest $t>k_n$ such that

$$q_{n-k+1}(b_k, \dots, b_n, a_t) - q_{n-k+1}(b_k, \dots, b_n, 0) \in V_{n+1}$$

 $0 \le k \le n$; such a choice of r is possible by the continuity of the g_{n-k+1} 's and by the fact that $\lim a_k = 0$. Thus by (2)

(4)
$$g_{n-k+1}(b_k, \dots, b_n, b_{n+1}) - g_{n-k}(b_k, \dots, b_n) \in V_{n+1}$$

Received January 18, 1972.