ON STOCHASTIC MATRICES WHOSE ABSOLUTE SMALLEST CHARACTERISTIC ROOT IS REAL

ALFRED BRAUER AND IVEY C. GENTRY

Let A be a generalized stochastic matrix with row sum s. It is well known that s is the trivial root of A. But the nontrivial roots can be very different. It was proved by the first author that the second largest root of A may be positive too [4]. In a paper to be published soon we proved that all the nontrivial roots can be imaginary, namely, if A is the matrix of a tied tournament [6]. We will show in this paper that under certain conditions the absolute smallest root is real. We will prove the following theorem.

Theorem. Let a_{11} and a_{22} be the two smallest main diagonal elements of A. Assume that

$$
\begin{equation*}
a_{22}>a_{11}(3-2 \sqrt{2})+s(2 \sqrt{2}-2) \tag{1}
\end{equation*}
$$

Then the smallest root of A is real.
Proof. It was proved by the first author [1] (see also [5]) that all the characteristic roots lie in the interior or on the boundary of the oval of Cassini

$$
\begin{equation*}
\left\{\left(x-a_{11}\right)^{2}+y^{2}\right\}\left\{\left(x-a_{22}\right)^{2}+y^{2}\right\}=\left(s-a_{11}\right)^{2}\left(s-a_{22}\right)^{2} \tag{2}
\end{equation*}
$$

The vertices of this oval are (see [3])

$$
\begin{equation*}
x=\frac{1}{2}\left(a_{11}+a_{22}\right) \pm \frac{1}{2}\left\{\left(a_{11}-a_{22}\right)^{2} \pm 4\left(s-a_{11}\right)\left(s-a_{22}\right)\right\}^{\frac{1}{2}} . \tag{3}
\end{equation*}
$$

This oval is doubly connected if

$$
\left(a_{11}-a_{22}\right)^{2}>4\left(s-a_{11}\right)\left(s-a_{22}\right)
$$

Hence

$$
\begin{gathered}
a_{11}^{2}-2 a_{11} a_{22}+a_{22}^{2}>4 s^{2}-4 s\left(a_{11}+a_{22}\right)+4 a_{11} a_{22} \\
a_{22}^{2}-a_{22}\left(6 a_{11}-4 s\right)+a_{11}^{2}-4 s^{2}+4 s a_{11}>0 \\
a_{22}>3 a_{11}-2 s+\left(4 s^{2}-12 a_{11} s+9 a_{11}^{2}-a_{11}^{2}+4 s^{2}-4 s a_{11}\right)^{\frac{1}{2}} \\
a_{22}>3 a_{11}-2 s+\left(8 s^{2}-16 a_{11} s+8 a_{11}^{2}\right)^{\frac{1}{2}} \\
a_{22}>3 a_{11}-2 s+2 \sqrt{2}\left(s-a_{11}\right)=a_{11}(3-2 \sqrt{2})+s(2 \sqrt{2}-2) .
\end{gathered}
$$

If (1) holds, then neither a_{22}, nor $a_{33}, \cdots, a_{n n}$ are points of that branch of (2) containing the point a_{11}.

Let M_{ν} be the union of the simply connected regions of all the $\frac{1}{2} n(n-1)$ ovals containing the point $a_{\nu \nu}$. Since M_{1} contains a_{11} and no other point $a_{k k}$,

Received December 31, 1971.

