ON EXTERIOR AND INTERIOR POINTS OF QUADRICS OVER A FINITE FIELD

FUANGLADA R. JUNG

1. Let F denote a finite field of order q and of odd characteristic p, and let T_{n} be an n-dimensional projective space with base field F. Let P_{n} and P_{n}^{\prime} denote two distinct ($n-1$)-dimensional hyperplanes of T_{n} defined by

$$
b_{0} x_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n}=0
$$

and

$$
c_{0} x_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}=0
$$

where at least one of the b_{i} and at least one of the c_{i} are nonzero respectively. If $n \geq 4$, a quadric of T_{n} defined by

$$
\begin{equation*}
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=0, \quad a_{0} a_{1} \cdots a_{n} \neq 0 \tag{1.1}
\end{equation*}
$$

has at least one point in common with the ($n-2$)-dimensional hyperplane $P_{n} \cap P_{n}^{\prime}$ [3; Theorem 3].

Let Q_{n} denote the quadric of T_{n} defined by (1.1). There is no loss in generality in assuming that Q_{n} is a diagonal form [2; §168]. If $\Psi(a)$ denotes the Legendre symbol in F, that is, $\Psi(a)=+1,-1$ or 0 according as a is a square, a nonsquare or zero in F, then the exterior of Q_{n} is defined to be the set of points $\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ of T_{n} such that $\Psi\left(Q\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right)=+1$ and the interior of Q_{n} is the set of points of T_{n} such that $\Psi\left(Q\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right)=-1[1 ; \S 1]$.

For any set K of points of T_{n} let $N_{E}(K)$ denote the number of points of K in the exterior of Q_{n} and let $N_{I}(K)$ be the number of points of K in the interior of Q_{n}. L. Carlitz [1] determined $N_{E}\left(L_{n}\right)$ and $N_{I}\left(L_{n}\right)$, where L_{n} is an arbitrary ($n-1$)-dimensional hyperplane of T_{n}. In this paper we determine $N_{E}(P)$ and $N_{I}(P)$, where $P=P_{n} \cap P_{n}^{\prime}$ (see Theorem 1). Moreover, as a direct consequence of Theorem 1 we find that either $N_{E}(P)=N_{I}(P)$ or $N_{E}(P)+N_{I}(P)=q^{n-2}$. Finally, we characterize ruled quadrics of T_{3} (see Theorem 4).
2. Let $N_{E}^{\prime}(P)$ denote the number of solutions $x_{0}, x_{1}, \cdots, x_{n}$ of the system of equations

$$
\begin{align*}
b_{0} x_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n} & =0 \tag{2.1}\\
c_{0} x_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n} & =0
\end{align*}
$$

such that $\Psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}\right)=1$ and $N_{I}^{\prime}(P)$ the number of solutions of (2.1) such that $\Psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}\right)=-1$. Then

Received November 8, 1971. This work was supported in part by NSF grant GP-8742.

