A UNIVERSAL COUNTABLE FIRST-COUNTABLE HAUSDORFF SPACE

BY LAWRENCE L. LARMORE

In the present paper we construct a countable, first-countable, connected Hausdorff space which contains a homeomorphic copy of every countable first-countable Hausdorff space.

Perhaps the best known example of a connected countable Hausdorff space was given by Bing [1].

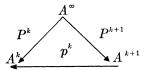
1. The A-construction. If S is any set, let S^+ be the set whose elements are those of S together with one other element which we call 0. (To avoid logical difficulties we may always choose 0 to be $\{S\}$.) Give S^+ the topology where if $T \subset S^+$, T is open if and only if $T = S^+$ or $0 \notin T$. Now if X is any topological space, define AX to be $X \times |X|^+$, where |X| is the underlying set of X.

We inductively define finite topological spaces A^k for all integers $k \ge 1$ as follows. A^1 is any one-point space and $A^{k+1} = AA^k$ for all $k \ge 1$. Let $i_k: A^k \to A^{k+1}$ be the function where $i_k a = (a, a)$ for all $a \in A^k$, and let $p^k: A^{k+1} \to A^k$ be the map (a map is a continuous function) where p^k is the projection onto the first factor. Thus $p^k i_k$ is the identity on A^k . Let A^{∞} be a direct limit (in the category of sets and one-to-one functions) of the A^k ; that is, we have a one-to-one function $I_k: A^k \to A^{\infty}$ for all k such that

(i) $I_{k+1}i_k = I_k$ for all $k \ge 1$

(ii) if $a \in A^{\infty}$, $a \in \text{Im } I_k$ for some k.

We see by (ii) that A° is countable. For each $k \geq 1$ let $P^k: A^{\circ} \to A^k$ be defined as follows. If $a \in A^{\circ}$ and if $a = I_r b$ for some $r \geq k$ and some $b \in A^r$, let $p^k a = p_r^k b$, where $p_r^k = p^k p^{k+1} \cdots p^{r-1}$. Since $I_{r+1}i_r = I_r$ and $p_{r+1}^k i_r = p_r^k$, p^k is well-defined. Furthermore, the following diagram is commutative for all k.



Let A° have the coarsest topology such that each P^{k} is continuous. Since each A^{k} has only a finite topology, A° has a countable subbase and is therefore first-countable; if $x \neq y \in A^{\circ}$, then $x = I_{k}a$ and $y = I_{k}b$ for some k; $(P^{k+1})^{-1}(A^{k} \times \{a\})$ and $(P^{k+1})^{-1}(A^{k} \times \{b\})$ are disjoint open neighborhoods of x and y so A° is Hausdorff.

THEOREM 1. Every countably infinite first-countable Hausdorff space X can be embedded in A° .

Received March 10, 1970. Revision received July 13, 1970.