SOME EXTENSIONS OF THE MEHLER FORMULA, II

BY H. M. SRIVASTAVA AND J. P. SINGHAL

1. In a recent paper [5] we gave the formula

$$
\begin{align*}
& \sum_{m, n, p=0}^{\infty} H_{n+p+r}(x) H_{m+p+s}(y) H_{m+n}(z) \frac{u^{m}}{m!} \frac{v^{n}}{n!} \frac{w^{p}}{p!} \tag{1}\\
&= S \sum_{k=0}^{\min (r, s)} 2^{2 k} k!\binom{r}{k}\binom{s}{k}\left(\frac{w-2 u v}{\sqrt{\left.\left(1-4 u^{2}\right)\left(1-4 v^{2}\right)\right\}}}\right)^{k} \\
& \cdot H_{r-k}\left(\frac{(x-2 v z)\left(1-4 u^{2}\right)-2(y-2 u z)(w-2 u v)}{\sqrt{\left\{\Delta\left(1-4 u^{2}\right)\right\}}}\right) \\
& \cdot H_{s-k}\left(\frac{(y-2 u z)\left(1-4 v^{2}\right)-2(x-2 v z)(w-2 u v)}{\sqrt{\left\{\Delta\left(1-4 v^{2}\right)\right\}}}\right)
\end{align*}
$$

where, for convenience,
(2) $\Delta=1-4 u^{2}-4 v^{2}-4 w^{2}+16 u v w$,

$$
\begin{align*}
S= & \Delta^{-\frac{1}{2}(r+s+1)}\left(1-4 u^{2}\right)^{r / 2}\left(1-4 v^{2}\right)^{s / 2} \tag{3}\\
& \cdot \exp \left\{\sum x^{2}-\frac{1}{\Delta}\left(\sum x^{2}-4 \sum u^{2} x^{2}-4 \sum w x y+8 \sum u v x y\right)\right\}
\end{align*}
$$

and where $\sum x^{2}, \sum u^{2} x^{2}, \sum w x y, \sum u v x y$ are symmetric functions in the indicated variables and $H_{n}(z)$ denotes the classical Hermite polynomial defined by Rodrigues' formula

$$
\begin{equation*}
H_{n}(z)=(-1)^{n} \exp \left(x^{2}\right) D_{x}^{n} \exp \left(-x^{2}\right), \quad D_{x}=d / d x \tag{4}
\end{equation*}
$$

Formula (1) provides an elegant unification of several extensions of the well-known Mehler formula (cf., e.g., [3; 198]) given recently by Carlitz [1] and [2].

The present note is a sequel to our paper [5]. We first derive the formula

$$
\begin{align*}
\sum_{m, n, p=0}^{\infty} H_{m+p}(x) & H_{n+p}(y) H_{m+r}(z) H_{n+s}(t) \frac{u^{m}}{m!} \frac{v^{n}}{n!} \frac{w^{p}}{p!} \tag{5}\\
= & R\left(1-4 v^{2}-4 w^{2}\right)^{r / 2}\left(1-4 u^{2}-4 w^{2}\right)^{s / 2} \\
& \cdot \sum_{k=0}^{\min (r, s)} k!\binom{r}{k}\binom{s}{k}\left(\frac{16 u v w}{\sqrt{\left.\left(1-4 u^{2}-4 w^{2}\right)\left(1-4 v^{2}-4 w^{2}\right)\right\}}}\right)^{k}
\end{align*}
$$

Received November 27, 1971. This work was supported in part by the National Research Council of Canada under Grant A7353. See also Abstract 71T-B183 in Notices of the American Mathematical Society, vol. 18(1971), p. 815.

