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1. In a recent paper [5] we gave the formula
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and where x, ux, wxy, uvxy ure symmetric functions in the
indicated variables and H.(z) denotes the classical Hermite polynomial defined
by Rodrigues’ formul

(4) H.(z) (--1)" exp (x) D: exp (-x), D d/dx.

Formula (1) provides an elegant unification of several extensions of the
well-known Mehler formula (cf., e.g., [3; 198]) given recently by Carlitz [1]
and [2].
The present note is a sequel to our paper [5]. We first derive the formula
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