ON A COMBINATORIAL IDENTITY OF WINQUIST AND ITS GENERALIZATION

BY L. CARLITZ AND M. V. SUBBARAO

1. Introduction and notation. L. Winquist [7] has recently established the following identity.

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{2}\left(1-a x^{n-1}\right)\left(1-b x^{n-1}\right)\left(1-a b^{-1} x^{n-1}\right)\left(1-a b x^{n-1}\right) \tag{1.1}\\
& \cdot\left(1-a^{-1} x^{n}\right)\left(1-b^{-1} x^{n}\right)\left(1-a^{-1} b x^{n}\right)\left(1-a^{-1} b^{-1} x^{n}\right) \\
&= \sum_{i=0}^{\infty} \sum_{i=-\infty}^{\infty}(-1)^{i+i}\left\{\left(a^{-3 i}-a^{3 i+3}\right)\left(b^{-3 i}-b^{3 i+1}\right)\right. \\
&\left.+\left(a^{-3 i+1}-a^{3 i+2}\right)\left(b^{3 i+2}-b^{-3 i-1}\right)\right\} x^{\frac{3 i(i+1)+\frac{1}{2} i(3 i+1)}{}}
\end{align*}
$$

He used this identity to derive some congruences and other properties associated with the partition function $p(n)$.

In this paper we give a very simple proof of this identity using only the triple product identity of Jacobi

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-x^{2 n}\right)\left(1-a x^{2 n-1}\right)\left(1-a^{-1} x^{2 n-1}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} a^{n} x^{n^{2}} . \tag{1.2}
\end{equation*}
$$

(For a simple proof of this identity refer to G. E. Andrews [1].)
Later in the paper we also indicate a combinatorial property implied by this identity.
Our proof of (1.1), which differs from that of Winquist, is perhaps the natural one. Further, it suggests a generalization of Winquist's identity, and this is given in §3. Our method of proof is capable of wider applications. For instance, we used it elsewhere to obtain [3] a very simple proof of the quintuple product identity [4], [5] and [6]

$$
\begin{aligned}
\coprod_{n=1}^{\infty}\left(1-x^{n}\right)\left(1-a x^{n}\right)\left(1-a^{-1} x^{n-1}\right)\left(1-a^{2} x^{2 n-1}\right)(1 & \left.-a^{-2} x^{2 n-1}\right) \\
& =\sum_{n=-\infty}^{\infty}\left(a^{3 n}-a^{-3 n-1}\right) x^{\frac{1}{2}\left(3 n^{2}+n\right)}
\end{aligned}
$$

It is necessary to introduce some notation to minimize the need for writing long expressions. Throughout the paper we adopt the following notation.

Unless otherwise stated, all summations are from $-\infty$ to ∞ and all products are from 1 to ∞.

Received November 2, 1971. The first author was supported in part by NSF grant GP-17031

