DILATATIONS OF QUASICONFORMAL BOUNDARY CORRESPONDENCES

BY F. W. GEHRING

1. Introduction. Suppose that $n \geq 2$ and that Γ is a family of curves in \overline{R}^n , the one-point compactification of Euclidean *n*-space R^n . For $p \in [1, \infty)$ the *p*-modulus of Γ is defined by

(1)
$$M_{p}(\Gamma) = \inf \int_{\mathbb{R}^{n}} \rho^{p} dm_{n} ,$$

where the infimum is taken over the family $F(\Gamma)$ of Borel measurable functions $\rho: \mathbb{R}^n \to [0, \infty]$ such that $\int_{\gamma} \rho \, ds \geq 1$ for each locally rectifiable curve $\gamma \in \Gamma$. Suppose next that D and D' are domains in $\overline{\mathbb{R}}^n$ and that $f: D \to D'$ is a homeomorphism. We call

$$K_{I}(f) = \sup \frac{M_{n}(f[\Gamma])}{M_{n}(\Gamma)} ,$$

$$K_{o}(f) = \sup \frac{M_{n}(\Gamma)}{M_{n}(f[\Gamma])} ,$$

$$K(f) = \max (K_{I}(f), K_{o}(f))$$

the inner, outer and maximal dilatations of f, where the suprema are taken over all curve families Γ in D for which $M_n(\Gamma)$ and $M_n(f[\Gamma])$ are not simultaneously 0 or ∞ . Then

(2)
$$1 \leq K_I(f) \leq K_O(f)^{n-1}, \quad 1 \leq K_O(f) \leq K_I(f)^{n-1},$$

and $K_I(f) = K_o(f) = K(f)$ when n = 2. (See, for example, [8; 34.5].) We say that f is K-quasiconformal if $K(f) \leq K < \infty$ and that f is quasiconformal if $K(f) < \infty$.

Now suppose that D is a half-space in \mathbb{R}^n and that $f: D \to D$ is an *n*-dimensional quasiconformal mapping. Then f has a homeomorphic extension to \overline{D} . Moreover when $n \geq 3$ the induced boundary mapping $g: \partial D \to \partial D$ is itself an (n-1)-dimensional quasiconformal mapping ([2] and [7]). Interesting consequences of this fact are given in [7]. In [5] it was shown that

(3)
$$K(g) \leq \min(K_I(f), K_o(f))$$

when n = 3, and this inequality was used in [3], [4] and [5] to study extremal quasiconformal mappings in \mathbb{R}^3 . In this paper we show that

(4)
$$K_I(g) \leq K_I(f)$$
 and $K_o(g) \leq K_o(f)$

Received October 26, 1971. This research was supported in part by the National Science Foundation Contracts GP 7041X and GP 28115.