ON THE DISTRIBUTION OF k-TH POWER NONRESIDUES

BY RICHARD H. HUDSON

1. Introduction. Let k be a positive integer. Throughout this paper p will denote a prime congruent to 1 modulo k. Let $C(p)$ denote the multiplicative group consisting of the residue classes modulo p and let $g(p, k)$ be the smallest k-th power nonresidue. Finally, let l denote the maximum number of consecutive integers in any given residue class.

Using deep analytic methods, Burgess [2] has shown that for $k=2, l=O\left(p^{1 / 4+\delta}\right)$ for every positive δ. Estimates for l employing elementary methods are less exact but are valid for every prime p and consequently are of interest. In 1932 Brauer [1], using elementary methods, showed that for each p

$$
\begin{equation*}
l<(2 p)^{1 / 2}+2 \tag{1.1}
\end{equation*}
$$

Let l_{n} denote the maximum number of consecutive integers in any of the $k-1$ nonresidue classes. In 1971 the author [3] showed that for $k=2$ and each prime p

$$
\begin{equation*}
l_{n}<p^{1 / 2}+3 / 4 \sqrt{2} p^{1 / 4}+2 \tag{1.2}
\end{equation*}
$$

This bound was previously shown by Brauer [1] to hold for all primes p with $g(p, k)<\sqrt{2} p^{1 / 4}$. In this paper a bound comparable to (1.2), namely,

$$
\begin{equation*}
l_{n}<p^{1 / 2}+2^{2 / 3} p^{1 / 3}+2^{1 / 3} p^{1 / 6}+1 \tag{1.3}
\end{equation*}
$$

will be shown to hold for all k and all $p \equiv 1(\bmod k)$. The method of proof is purely elementary and furthermore illustrates an interesting connection between large values of l_{n} and upper bounds for $g(p, k)$.

2. A preliminary theorem.

Theorem 1. For $1 / 3 \leq \alpha \leq 1 / 2, g(p, k) \geq 2^{2 / 3} p^{\alpha}+2^{1 / 3} p^{\alpha / 2}+1 \Rightarrow$ $l_{n}<p^{1-3 \alpha / 2}+2^{4 / 3} p^{\alpha / 2}+2^{-1 / 3} p^{1-2 \alpha}+1$.

Proof. Designate the longest sequence of k-th power nonresidues by

$$
\begin{equation*}
\bar{Q}=\left\{Q, Q+1, \cdots, Q+l_{n}-1\right\} . \tag{2.1}
\end{equation*}
$$

Let r be a residue with $1 \leq r<g(p, k),(g(p, k)-1)^{2}>p / r$, and $r \leq l_{n}$. Consider all multiples of r contained in \bar{Q}, say

$$
\begin{equation*}
b r,(b+1) r, \cdots,(b+c-1) r \tag{2.2}
\end{equation*}
$$

where $c \geq 1$. This yields a sequence of c nonresidues, namely,

$$
\begin{equation*}
\bar{B}=\{b, b+1, \cdots, b+c-1\} . \tag{2.3}
\end{equation*}
$$

Received October 15, 1971.

