ON THE DISTRIBUTION OF *k***-TH POWER NONRESIDUES**

BY RICHARD H. HUDSON

1. Introduction. Let k be a positive integer. Throughout this paper p will denote a prime congruent to 1 modulo k. Let C(p) denote the multiplicative group consisting of the residue classes modulo p and let g(p, k) be the smallest k-th power nonresidue. Finally, let l denote the maximum number of consecutive integers in any given residue class.

Using deep analytic methods, Burgess [2] has shown that for $k = 2, l = O(p^{1/4+\delta})$ for every positive δ . Estimates for l employing elementary methods are less exact but are valid for every prime p and consequently are of interest. In 1932 Brauer [1], using elementary methods, showed that for each p

$$(1.1) l < (2p)^{1/2} + 2$$

Let l_n denote the maximum number of consecutive integers in any of the k - 1 nonresidue classes. In 1971 the author [3] showed that for k = 2 and each prime p

(1.2)
$$l_n < p^{1/2} + 3/4 \sqrt{2} p^{1/4} + 2.$$

This bound was previously shown by Brauer [1] to hold for all primes p with $g(p, k) < \sqrt{2}p^{1/4}$. In this paper a bound comparable to (1.2), namely,

(1.3)
$$l_n < p^{1/2} + 2^{2/3} p^{1/3} + 2^{1/3} p^{1/6} + 1,$$

will be shown to hold for all k and all $p \equiv 1 \pmod{k}$. The method of proof is purely elementary and furthermore illustrates an interesting connection between large values of l_n and upper bounds for g(p, k).

2. A preliminary theorem.

Theorem 1. For $1/3 \leq \alpha \leq 1/2$, $g(p, k) \geq 2^{2/3}p^{\alpha} + 2^{1/3}p^{\alpha/2} + 1 \Rightarrow l_n < p^{1-3\alpha/2} + 2^{4/3}p^{\alpha/2} + 2^{-1/3}p^{1-2\alpha} + 1$.

Proof. Designate the longest sequence of k-th power nonresidues by

(2.1)
$$\bar{Q} = \{Q, Q+1, \cdots, Q+l_n-1\}$$

Let r be a residue with $1 \le r < g(p, k)$, $(g(p, k) - 1)^2 > p/r$, and $r \le l_n$. Consider all multiples of r contained in \overline{Q} , say

(2.2)
$$br, (b+1)r, \cdots, (b+c-1)r$$

where $c \ge 1$. This yields a sequence of c nonresidues, namely,

(2.3)
$$\bar{B} = \{b, b+1, \cdots, b+c-1\}$$

Received October 15, 1971.