# IMBEDDING OF COMPACT METRIC SPACES INTO CUBES 

BY NOSUP KWAK

1. Introduction. The present paper grew from an attempt to settle the following unsolved problem for the case where the $k$-dimensional set $X$ is compact. "It is not known ... whether there exists any $k$-dimensional subset of $E_{n}$ containing a topological image of every $k$-dimensional subset of $E_{n}$ when $n<2 k+1 "[4 ; 65]$.
S. W. Hahn [3] has shown that when $k=n$ and $k=n-1, M_{n}^{k}$ contains a strong topological image (image under a homeomorphism of the space onto itself) of every $k$-dimensional subset of $E_{n}$. He also showed, by counterexample, that the result is false for $0 \leq k \leq n-2$ for general $X$. Sharp [6] added the hypothesis that $X$ is an $F_{\sigma}$-set in $E_{n}$ and proved that $X$ can be imbedded in $M_{n}^{k}$ under a strong homeomorphism if $k=n-2$ and $n \geq 4$. He also showed that this result fails for $0 \leq k \leq n-3$ and for $k=1$ if $n=3$.

The problem which motivated the present study remains unsolved, but the attempts to solve it lead to interesting related problems. Now if $n \geq 2 k+1$, it is known that the set of homeomorphisms of $X$ into $M_{n}^{k}$ is a dense $G_{\sigma}$-set in the set $H\left(X, I_{n}\right)$ of all homeomorphisms of $X$ into $I_{n}$. Using this as a model we formulate the following proposition, which if true, would give an affirmative answer to the original problem.
( P ): Suppose $X$ is compact and $\operatorname{dim} X=k$. Then the set of homeomorphisms $\{f\}$ such that $f(X) \subset M_{n}^{k}$ is a dense $G_{\delta}$-set in the function space $H\left(X, I_{n}\right)$.
The present paper formulates three new propositions and shows that each is equivalent to proposition ( P ), that is, if any one of these is true, then all four are true. The precise statement is given as Theorem 4.1. Even if proposition $(\mathrm{P})$ is false in general, there certainly exist compact spaces $X$ for which it is true and for such an $X$ the four propositions of Theorem 4.1 are all true.

We remark that proposition ( P ) is true for cases $k=n-1, k=n-2$, and $n \geq 2 k+1$ by Lemma 4.2, a theorem of Sharp [6;561], and a theorem of Hurewicz and Wallman [4;64] respectively. The first unsolved case is when $k=3$ and $n=6$.

We wish to thank Professor John H. Roberts for his expert guidance in the preparation of this paper.
2. Preliminary lemmas. Throughout the paper Euclidean $n$-space $E_{n}$ and an $n$-dimensional cube $I_{n}$ in $E_{n}$ are metrized by the Euclidean metric denoted by $d$. The sets $M_{n}^{j}$ and $L_{n}^{j}$ consist of the totality of points in $I_{n}$ with at most $j$ and with at least $j$ rational coordinates respectively. Note that $\operatorname{dim} M_{n}^{i}=j$ and $\operatorname{dim} L_{n}^{i}=n-j$.

Received June 2, 1970.

