A GENERATING FUNCTION AND A BINOMIAL IDENTITY

BY J. P. SINGHAL

1. Introduction. It is well known that the classical Jacobi polynomial $P_{n}^{(\alpha, \beta)}(x)$ satisfies the generating function [6; 69]

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}^{(\alpha, \beta)}(x) t^{n}=2^{\alpha+\beta} \rho^{-1}(1-t+\rho)^{-\alpha}(1+t+\rho)^{-\beta} \tag{1.1}
\end{equation*}
$$

where

$$
\rho=\left(1-2 x t+t^{2}\right)^{\frac{1}{2}} .
$$

It is not hard to see that (1.1) is equivalent to the more symmetrical form

$$
\begin{align*}
& \sum_{i, k=0}^{\infty}\binom{\alpha+j+k}{j}(\beta+\underset{k}{j+k}) u^{i} v^{k} \tag{1.2}\\
&=2^{\alpha+\beta} \sigma^{-1}(1-u+v+\sigma)^{-\alpha}(1+u-v+\sigma)^{-\beta}
\end{align*}
$$

where

$$
\sigma=\left\{(1-u-v)^{2}-4 u v\right\}^{\frac{1}{2}} .
$$

A simple and direct proof of (1.2) is due to Carlitz [2] (see also [5]).
Recently Carlitz [4] gave the following two extensions of (1.2).

$$
\begin{align*}
& \sum_{i, i, k=0}^{\infty}\binom{\alpha+i+j}{i}\binom{\beta+j+k}{j}\binom{\gamma+k+i}{k} u^{i} v^{i} w^{k} \tag{1.3}\\
& \quad= 2^{\alpha+\beta+\gamma} R^{-1}\left(\frac{1-w}{1-u+v-w+R}\right)^{\alpha}\left(\frac{1-u}{1-u-v+w+R}\right)^{\beta} \\
& \cdot\left(\frac{1-v}{1+u-v-w+R}\right)^{\gamma}
\end{align*}
$$

where

$$
\begin{gather*}
R=\left\{(1-u-v-w)^{2}-4 u v w\right\}^{\frac{1}{2}} . \\
\sum_{i, i, k, r=0}^{\infty}\binom{\alpha+i+j}{i}\binom{\beta+j+k}{j}\binom{\gamma+k+r}{k}\binom{\delta+r+i}{r} u^{i} v^{i} w^{k} t^{r} \tag{1.4}\\
=S^{-1}(1-x)^{\alpha}(1-y)^{\beta}(1-z)^{\gamma}(1-s)^{\delta}
\end{gather*}
$$

where

$$
S=\left\{(1-u-v-w-t+u w+v t)^{2}-4 u v w t\right\}^{\frac{1}{2}}
$$

Received March 13, 1970. Revision received May 3, 1971.

