ORTHOGONAL SIMILARITY OF NORMAL MATRICES IN $G F(q)$

By A. Duane Porter and Leslie Ann Hanson

1. Introduction. It is well known [6; Theorem 9-27] that over the real field every $n \times n$ normal matrix A is orthogonally similar to a matrix of the form $\operatorname{diag}\left[D_{1}, \cdots, D_{m}, R\right]$, where

$$
D_{i}=\left[\begin{array}{rr}
a_{i} & -b_{i} \\
b_{i} & a_{i}
\end{array}\right], \quad 1 \leq j \leq m
$$

$R=\operatorname{diag}\left(r_{2 m+1}, \cdots, r_{n}\right)$ with $a_{i} \pm b_{i} i, 1 \leq j \leq m$, complex characteristic roots of A and $r_{t}, 2 m<t \leq n$, real characteristic roots. The proof of this theorem, as well as the proofs of other theorems concerning real normal matrices, fails over a finite field because (1) the sum of non-zero squares may equal zero, (2) for odd characteristic, exactly one-half of the nonzero elements do not have square roots in the field and (3) the characteristic roots of a matrix may lie in an extension field of degree greater than 2 over the field of elements of the matrix.

In view of the use of canonical forms for finding the number of solutions of matric equations over a finite field (for examples see [1], [2], [3], [4], [5]), it would seem desirable to have suitable canonical forms available under orthogonal similarity. Thus the purpose of this paper is to obtain such canonical forms for certain normal matrices. In [9] Porter and Adams obtained such canonical forms for certain symmetric matrices over a finite field. Also in [7] and [8] Porter obtained canonical forms under orthogonal similarity for other symmetric matrices and certain skew matrices. It is hoped this present paper will serve as a supplement to these three papers.

In Definitions 1.1 and 1.2 we define a characteristic K-vector and a K-normal matrix. Then in Theorems 1 and 2 we prove some preliminary properties about K-normal matrices. Theorem 3 states the main theorem on orthogonal similarity of normal matrices, and Theorems 4 and 5 give some interesting sidelights of the proof of Theorem 3.
2. Notation and definitions. Let $F=G F(q)$ be the finite field of $q=p^{r}$ elements, p odd. Elements of F will be denoted by lower case Roman letters $a, b, a_{i}, b_{i}, f_{i}, h_{i}, u$, and elements of any extension field of F will be denoted by $c, d, c_{i}, c_{i j}, d_{i}$, where in each case i, j represent any subscripts; r or r_{i} will denote eigenvalues of matrices; lower case Greek letters $\alpha, \beta, \alpha_{i}, \beta_{i}, \cdots$ will denote vectors except for θ which has a special value defined below; matrices will be denoted by Roman capitals A, B, D, D_{i}, P, Q except for P_{i} which is

