GENERATING FUNCTIONS FOR POWERS OF THIRD ORDER RECURRENCE SEQUENCES

By A. G. Shannon and A. F. Horadam

1. Introduction. Generating functions for powers of certain second order recurrence sequences have been investigated in this journal by Riordan [6], Carlitz [1] and Horadam [3].

Our object here is to find a formula (obtained in (2.2)) for $k_r(x)$, where

$$k_r(x) = \sum_{n=0}^{\infty} k_n^r x^n \qquad (r \ge 1)$$

and k_n satisfies the third order recurrence relation

(1.1)
$$k_n = Pk_{n-1} + Qk_{n-2} + Rk_{n-3} \ (n \ge 3)$$

with suitable initial values k_0 , k_1 , k_2 and where P, Q, R are arbitrary integers.

Relation (1.1) has an auxiliary equation $x^3 - Px^2 - Qx - R = 0$, which we suppose has three distinct, real roots given by α , β , γ . Write $p = \alpha + \beta$, $q = \alpha\beta$. Now (1.1) can be expressed as

(1.2)
$$(E^2 - pE + q)w_n = 0,$$

where E is an operator defined by $Ek_n = k_{n+1}$ and where we have replaced $(E - \gamma)k_n$ by w_n . Suppose further that $w_0 = a$ and $w_1 = b$ so that $\{w_n\}$ represents the generalized sequence of numbers studied in detail in [4] and [5].

2. Some generating functions. From the above we get

$$k_{n+1}^{r} = (w_{n} + \gamma k_{n})^{r}$$

= $w_{n}^{r} + \gamma^{r} k_{n}^{r} + \sum_{j=1}^{r-1} {\binom{r}{j}} w_{n}^{j} \gamma^{r-j} k_{n}^{r-j}.$

Thus

$$\sum_{n=0}^{\infty} k_{n+1}^{r} x^{n+1} = x \sum_{n=0}^{\infty} w_{n}^{r} x^{n} + \gamma^{r} x \sum_{n=0}^{\infty} k_{n}^{r} x^{n} + x \sum_{n=0}^{\infty} \sum_{j=1}^{r-1} {\binom{r}{j}} w_{n}^{j} \gamma^{r-j} k_{n}^{r-j} x^{n}$$

and

(2.1)
$$(1 - \gamma^{r} x)k_{r}(x) = k_{0}^{r} + xw_{r}(x) + x \sum_{n=0}^{\infty} \sum_{j=1}^{r-1} {r \choose j} w_{n}^{j} \gamma^{r-j} k_{n}^{r-j} x^{n}.$$

LEMMA.

$$\sum_{n=0}^{\infty} w_n^j k_n^{r-j} x^n = \sum_{i=0}^j {j \choose i} A^{j-i} B^i k_{r-i} (\alpha^{j-i} \beta^i x),$$

Received February 10, 1970. Revision received June 14, 1971.