NOTE ON THE NUMBERS OF JORDAN AND WARD

By L. Carlitz

1. We define the Stirling numbers of the first kind by means of

$$
\begin{equation*}
x(x+1) \cdots(x+n-1)=\sum_{k=0}^{n} S_{1}(n, k) x^{k} \tag{1.1}
\end{equation*}
$$

and those of the second kind by

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} S(n, k) x(x-1) \cdots(x-k+1) \tag{1.2}
\end{equation*}
$$

It is familiar that

$$
\begin{equation*}
S_{1}(n+1, k)=S_{1}(n, k-1)+n S_{1}(n, k) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n+1, k)=S(n, k-1)+k S(n, k) \tag{1.4}
\end{equation*}
$$

Jordan [5; Chapter 4] and Ward [7] have introduced certain arrays of numbers related to $S(n, k)$ and $S_{1}(n, k)$. We shall not use the notation of these writers. In the first place we put

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{j=0}^{k-1} S_{1}^{\prime}(k, j)\binom{n}{2 k-j} \quad(k>0) \tag{1.5}
\end{equation*}
$$

for the numbers of the first kind. Similarly, for the numbers of the second kind we put

$$
\begin{equation*}
S(n, n-k)=\sum_{i=0}^{k-1} S^{\prime}(k, j)\binom{n}{2 k-j} \quad(k>0) \tag{1.6}
\end{equation*}
$$

The coefficients $S^{\prime}(k, j)$ satisfy the recurrence

$$
\begin{equation*}
S^{\prime}(k+1, j)=(k-j+1) S^{\prime}(k, j-1)+(2 k-j+1) S^{\prime}(k, j) \tag{1.7}
\end{equation*}
$$

while $S_{1}^{\prime}(k, j)$ satisfy

$$
\begin{equation*}
S_{1}^{\prime}(k+1, j)=(2 k-j+1)\left(S_{1}^{\prime}(k, j-1)+S_{1}^{\prime}(k, j)\right) \tag{1.8}
\end{equation*}
$$

The coefficients $S^{\prime}(k, j)$ have occurred recently in a rather unexpected connection [1]. Put

$$
e^{n z}=\sum_{r=0}^{n} \frac{(n z)^{r}}{n!}+\frac{(n z)^{n}}{n!} S_{n}(z) .
$$

