A GENERALIZED INFINITE PRODUCT MEASURE

Br WILBUR L. SMITH

1. Introduction. The standard definition of the product measure in a product of infinitely many measure spaces suffers from the defect that a product of measurable sets need not be measurable (see reference [2]). In this paper we define an extension of the standard product measure which is free of this defect. However, our extended product measure is not always a regular measure when the given measures are regular. Instead it is semi-regular; this means that measurable sets differ (in the sense of symmetric difference) from open sets by sets of arbitrarily small measure. In particular our theory applies to subsets of a Tychonoff cube of arbitrary cardinality.

2. Definitions and notation. By a measure space we mean a triple (S, \mathfrak{M}, m) consisting of a non-empty set S, a σ -field $\mathfrak M$ of subsets of S and a countably additive measure m defined on \mathfrak{M} . Throughout this paper $(X_{\alpha}, \mathfrak{M}_{\alpha}, \mu_{\alpha})$ will denote a measure space for each α contained in an infinite index set Γ and $\mu_{\alpha}(X_{\alpha}) = 1$ for every $\alpha \in \Gamma$.

Let $X = \prod_{\alpha \in \Gamma} X_\alpha$ denote the cartesian product of the collection $\{X_\alpha : \alpha \in \Gamma\}.$ A subset A of X is called a measurable rectangle if it is of the form

$$
(1) \hspace{1cm} A = \prod_{\alpha \in \Gamma} A_{\alpha} \; ,
$$

where A_{α} and, with a finite number of exceptions, $A_{\alpha} = X_{\alpha}$. If μ is a countably additive measure defined on a σ -field of subsets of X containing all measurable rectangles such that $\mu(A) = \prod_{i=1}^n \mu_{\alpha_i}(A_{\alpha_i})$ for every measurable rectangle $A = \prod_{\alpha \in \Gamma} A_{\alpha}$, where α_i are those indices for which $A_{\alpha_i} \neq X_{\alpha_i}$, then μ is called an *infinite product measure*. Let $\&$ be the σ -field of subsets of X generated by the collection of all measurable rectangles. We shall let μ denote the unique infinite product measure defined on (B whose existence is established in [2]. $(X, \bar{\mathbb{G}}, \bar{\mu})$ will denote the completion of (X, \mathbb{G}, μ) .

Now let S be an arbitrary set. If A and B are subsets of S, the symmetric difference of A and B is denoted by $A + B$, i.e., $A + B = (A - B) \cup (B - A)$ $(A \cap B') \cup (A' \cap B)$, where A' denotes the complement of A relative to S. A σ -ideal of subsets of S is a collection of subsets $\mathfrak D$ of S such that $A \bullet \mathfrak D$ and $B \subseteq A$ imply $B \in \mathfrak{D}$, and $A_i \in \mathfrak{D}$, $i = 1, 2, \cdots$, imply $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{D}$.

3. An extension of $\vec{\mu}$ **.** In the sequel we shall assume that Γ is uncountable. A subset A of $X = \prod_{\alpha \in \Gamma} X_{\alpha}$ is said to depend on a countable number of coordinates if there exists a countable subset J of Γ such that a point $(x_{\alpha})_{\alpha \in \Gamma}$ of X belongs

Received January 13, 1970. Revision received March 10, 1970.