ON THE DISTRIBUTION OF GENERALIZED K-FREE INTEGERS IN RESIDUE CLASSES

By M. V. Subbarao and Y. K. Feng

1. Introduction and notation. Throughout this paper, the letters a, b, d, e, $h, K, \alpha, \gamma, q, r, s, m, n$ represent natural numbers and p is reserved for primes. Let $\zeta(s)$ denote the Riemann zeta function. We recall that an integer n is said to be K-free whenever it is not divisible by the K-th power of any prime. In the extreme cases, unity is the only 1 -free integer, and every integer is ∞-free.

There is a vast literature concerning K-free integers for general and special values of K. We might refer to the bibliography given in Eckford Cohen and Richard L. Robinson [1] in this connection.

In this paper we wish to generalize the notion of K-free integers as follows. Let q and r be fixed integers such that $0<q<r$. Any integer $n>1$ has the unique representation

$$
\begin{equation*}
n=a^{r} b, \tag{1.1}
\end{equation*}
$$

where b is r-free. We shall call a^{r} the r-th power part of n and b the r-free part. If, in addition, b is q-free, we shall call n a generalized q-free integer or an (r, q) integer. Notice that in the limiting case when $r \rightarrow \infty$, an (r, q)-integer becomes a q-free integer. We may also observe that an ($r, 1$)-integer is the same as an r-th power integer.

The (r, q)-integers were first introduced in 1966 in a paper by M. V. Subbarao and V. C. Harris [5] in connection with a generalization of the well known Ramanujan trigonometric sum $C(n, r)$. In that paper the following result was established. Let S be the set of all (r, q)-integers. Note that S contains unity. Let $\lambda(n)=\lambda_{r, a}(n)$ be the multiplicative arithmetic function defined by

$$
\lambda\left(p^{a}\right)=\left\{\begin{array}{rll}
1 & a \equiv 0 & (\bmod r) \tag{1.2}\\
-1 & a \equiv q & (\bmod r) \\
0 & \text { otherwise }
\end{array}\right.
$$

Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}=\frac{\zeta(r s)}{\zeta(q s)} \quad\left(s>\frac{1}{q}\right) \tag{1.3}
\end{equation*}
$$

Also

$$
\psi(n)=\psi_{r, a}(n)=\sum_{d \backslash n} \lambda(d)= \begin{cases}1 & n \varepsilon S \tag{1.4}\\ 0 & n \notin S .\end{cases}
$$

Received January 9, 1970. Revision received November 9, 1970.

