ENUMERATION OF SYMMETRIC ARRAYS, II
 By L. Carlitz

1. Introduction and summary. $S_{n}(r)$ denotes the number of $n \times n$ arrays ($a_{i j}$), where the $a_{i j}$ are nonnegative integers such that

$$
\begin{equation*}
a_{i j}=a_{i i} \quad(i, j=1,2, \cdots, n) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j}=r \quad(j=1,2, \cdots, n) \tag{1.2}
\end{equation*}
$$

In an earlier paper [1], the writer showed that

$$
\begin{equation*}
\sum_{r=0}^{\infty} S_{3}(r) x^{r}=\frac{1+x+x^{2}}{(1-x)^{4}(1+x)} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{r=0}^{\infty} S_{4}(r) x^{r}=\frac{1+4 x+10 x^{2}+4 x^{3}+x^{4}}{(1-x)^{7}(1+x)} \tag{1.4}
\end{equation*}
$$

In proving (1.4) it was found convenient to consider the following related problems. Let $T(r, s)$ denote the number of quadruplets (b, c, d, e), where b, c, d, e are nonnegative integers such that

$$
\begin{equation*}
b+c \leq r, d+e \leq r, b+d \leq s, c+e \leq s \tag{1.5}
\end{equation*}
$$

Then

$$
\begin{align*}
\sum_{r, s=0}^{\infty} T(r, s) x^{r} y^{s}= & \frac{1+4 x y+4 x^{2} y^{2}+x^{2} y+x y^{2}+x^{3} y^{3}}{(1-x)(1-y)(1-x y)^{2}\left(1-x^{2} y\right)\left(1-x y^{2}\right)} \tag{1.6}\\
& \sum_{r=0}^{\infty} T(r, r) x^{r}=\frac{(1+x)^{2}}{(1-x)^{5}} \tag{1.7}
\end{align*}
$$

In the present paper we consider first the weighted sum

$$
\begin{equation*}
S_{3}\left(r ; \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\sum_{\substack{a+b \leq \leq r \\ b+b \leq r \\ a+2 b+c \geq r}} \lambda_{1}^{a} \lambda_{2}^{b} \lambda_{3}^{c}, \tag{1.8}
\end{equation*}
$$

which reduces to $S_{3}(r)$ when $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$. We show that

$$
\begin{align*}
\sum_{r=0}^{\infty} S_{3}\left(r ; \lambda_{1}, \lambda_{2}\right. & \left., \lambda_{3}\right) x^{r} \tag{1.9}\\
& =\frac{1-\lambda_{1} \lambda_{2} \lambda_{3} x^{3}}{\left(1-\lambda_{1} x\right)\left(1-\lambda_{2} x\right)\left(1-\lambda_{3} x\right)\left(1-\lambda_{1} \lambda_{3} x\right)\left(1-\lambda_{2} x^{2}\right)}
\end{align*}
$$

Received January 15, 1970. Supported in part by NSF grant GP-7855.

