SOME RESULTS ON THE ENUMERATION OF SYMMETRIC ARRAYS

By Roger C. Grimson

1. Let $S\left(r_{1}, \cdots, r_{n}\right)$ be the number of $n \times n$ symmetric arrays [$a_{i j}$], where the $a_{i j}$ are nonnegative integers satisfying

$$
\sum_{i=1}^{n} a_{i i}=r_{i}, \quad i=1(1) n .
$$

It is convenient to let $S_{n}(r)=S(r, r, \cdots, r)$ where there are $n r$'s.
L. Carlitz [1] found formulas and generating functions for $S_{n}(1)$ and $S_{i}(r)$, $i \leq 4$. H. Gupta [2] gave a recurrence for $S_{n}(2)$ and determined the generating function. D. P. Roselle [4] obtained a recurrence for $S\left(r_{1}, \cdots, r_{n}\right)$.

The object of this paper is to exhibit results for other cases of this enumeration problem.
2. Since $S\left(r_{1}, \cdots, r_{n}\right)=S\left(r_{i_{1}}, \cdots, r_{i_{n}}\right)$, where $\left(i_{1}, \cdots, i_{n}\right)$ is any permutation of ($1, \cdots, n$), we may assume $r_{n} \leq \cdots \leq r_{1}$. Then

$$
S\left(r_{1}, \cdots, r_{n}\right)=\sum_{A} 1=\sum_{B} \sum_{C} 1,
$$

where A is

$$
\begin{gathered}
a_{11}+a_{12}+\cdots+a_{1 n}=r_{1} \\
a_{12}+a_{22}+\cdots+a_{2 n}=r_{2} \\
\cdots \\
a_{1 n}+a_{2 n}+\cdots+a_{n n}=r_{n}
\end{gathered}
$$

where B is

$$
a_{1 n}+a_{2 n}+\cdots+a_{n-1 n} \leq r_{n}
$$

and where C is

$$
\begin{gathered}
a_{11}+a_{12}+\cdots+a_{1 n-1}=r_{1}-a_{1 n} \\
a_{12}+a_{22}+\cdots+a_{2 n-1}=r_{2}-a_{2 n} \\
\cdots \\
a_{1 n-1}+a_{2 n-1}+\cdots+a_{n-1 n-1}=r_{n-1}-a_{n-1 n} .
\end{gathered}
$$

This gives the recurrence

$$
\begin{equation*}
S\left(r_{1}, \cdots, r_{n}\right)=\sum_{a_{1}+\cdots+a_{n-1} \leq r_{n}} S\left(r_{1}-a_{1}, \cdots, r_{n-1}-a_{n-1}\right) . \tag{2.1}
\end{equation*}
$$

Received January 1, 1970.

