ON THE ENUMERATION OF SYMMETRIC MATRICES

By Hansraj Gupta

1. Roselle [2] has found that $S\left(r_{1}, \cdots, r_{n}\right)$ the number of $n \times n$ symmetric matrices with non-negative integral elements such that the sum of the elements in the j-th row is $r_{i}(\geq 0)$ is the coefficient of $x_{1}^{r_{1}} x_{2}^{r_{2}} \cdots x_{n}^{r_{n}}$ in the product

$$
G(n)=\prod_{0 \leq i<k \leq n}\left(1-x_{i} x_{k}\right)^{-1}, \quad x_{0}=1
$$

He has also obtained a recurrence for $S\left(r_{1}, \cdots, r_{n}\right)$.
Here we give another recurrence which appears to be simpler than his and obtain an explicit expression for $S\left(r_{1}, r_{2}, r_{3}\right)$.

Since the particular order in which $r_{1}, r_{2}, \cdots, r_{n}$ appear in $S\left(r_{1}, r_{2}, \cdots, r_{n}\right)$ does not affect its value, we can assume that

$$
r_{1} \geq r_{2} \geq \cdots \geq r_{n} \geq 0
$$

2. Evidently

$$
G(n+1) \prod_{i=0}^{n}\left(1-x_{i} x_{n+1}\right)=G(n)
$$

Define the operator z_{j} by the relation

$$
z_{i} S\left(r_{1}, \cdots, r_{i}, \cdots, r_{n+1}\right)=S\left(r_{1}, \cdots, r_{i}-1, \cdots, r_{n+1}\right)
$$

with z_{0} as the identity operator. Then our recurrence is

$$
\left\{\prod_{i=0}^{n}\left(z_{0}-z_{i} z_{n+1}\right)\right\} S\left(r_{1}, \cdots, r_{n}, r_{n+1}\right)=0
$$

For $n=2$, we have

$$
\left(z_{0}-z_{3}\right)\left(z_{0}-z_{1} z_{3}\right)\left(z_{0}-z_{2} z_{3}\right) S\left(r_{1}, r_{2}, r_{3}\right)=0
$$

This gives

$$
\begin{aligned}
S\left(r_{1}, r_{2}, r_{3}\right)= & S\left(r_{1}, r_{2}, r_{3}-1\right)+S\left(r_{1}, r_{2}-1, r_{3}-1\right) \\
& +S\left(r_{1}-1, r_{2}, r_{3}-1\right)-S\left(r_{1}, r_{2}-1, r_{3}-2\right) \\
& -S\left(r_{1}-1, r_{2}, r_{3}-2\right)-S\left(r_{1}-1, r_{2}-1, r_{3}-2\right) \\
& +S\left(r_{1}-1, r_{2}-1, r_{3}-3\right)
\end{aligned}
$$

Since $S\left(r_{1}, 0,0\right)=S\left(r_{1}\right)=1$ for all $r_{1} \geq 0$ and $S\left(r_{1}, r_{2}, 0\right)=S\left(r_{1}, r_{2}\right)=$ $r_{2}+1$ for $r_{1} \geq r_{2} \geq 0$, giving to r_{3} the values $1,2,3, \cdots$ in succession Received January 1, 1970.

