GENERIC COVERS AND DIMENSION

By DAVID BOOTH

1. Introduction. In his paper [2], K. Gödel has listed several suspicious propositions of point set theory which are implied by the continuum hypothesis. This paper concerns one of these propositions: there is an infinite dimensional subset of Hilbert space each of whose subsets is either countable or infinite dimensional. One may as well suppose that such a set H is embedded in the Hilbert cube, $I^{*\circ}$, where I is [0, 1] taken as a topological space.

There are several popular definitions of dimension which all prove to be equivalent for separable spaces. Here we shall use the 'big inductive' dimension which gives dim X = -1 if X = 0 and dim $X \leq n$ when for any two disjoint closed sets A and B in X there is an open set U for which $U \supseteq A$, $U \cap B = 0$, and dim $(\delta U) \leq n - 1$. The symbol δU denotes the topological boundary of U. Obviously I is the union of 2^{\aleph_0} closed sets (points) each having dimension zero. An infinite dimensional space is one which does not have finite dimension.

2. Generic covers. If $\mathcal{O} = \langle P, \leq \rangle$ is a partial order, then $D \subseteq P$ is dense in \mathcal{O} if for each $x \in P$ there is a $y \in D$ with $y \leq x$. A subset G of P is generic for \mathfrak{D} , where \mathfrak{D} is a collection of dense subsets of P, if

- (i) for each x, y ε G there is a z ε G with $z \leq x, y$
- (ii) $y \in G$ whenever $y \ge x \in G$
- (iii) if $D \in \mathfrak{D}$ then $G \cap D \neq 0$.

In the theorem below X is a separable metric space, A and B are disjoint closed sets in X, and $\{F_{\alpha} : \alpha \in \lambda\}$ is a closed covering of X having power λ and such that dim $F_{\alpha} \leq 0$. We shall strive to separate A and B by an open set with empty boundary.

THEOREM 1. When X, A, B and $\{F_{\alpha} : \alpha \in \lambda\}$ are as above, there is a countable partial order $\mathcal{O}(X, A, B)$ and a collection, D, of λ dense subsets of $\mathcal{O}(X, A, B)$ such that given any D generic set, G, there is an open and closed set U, constructible from G, with $A \subseteq U$ and $B \cap U = 0$.

Proof. One may treat such an X as if it were a subspace of I^{*} and take basic neighborhoods in I^{*} to be finite sequences of open intervals with rational endpoints. Let P(X, A, B) consist of pairs of sequences of the form

 $\langle \langle N_0, \cdots, N_{n-1} \rangle, \quad \langle M_0, \cdots, M_{n-1} \rangle \rangle$

Received November 18, 1969. Revision received January 16, 1970.