MONTGOMERY-SAMELSON COVERINGS ON MANIFOLDS

BY ERIK HEMMINGSEN AND WILLIAM REDDY

1. In this note we generalize a theorem concerning the homology of the branch set of a Montgomery-Samelson (M-S) covering [6, Theorem 2] to Čech homology. We apply this result by studying regular M-S coverings defined on complex projective space (a regular branched covering is the orbit map of the action of a finite solvable group). Throughout this note, f denotes a map from the compact, connected *n*-manifold M onto the *n*-manifold N which is a local homeomorphism except at points of the branch set, which we denote by B_f . We assume that dim $B_f \leq n-2$. This implies that $f \mid (M - f^{-1}fB_f)$ is a d-to-1 covering map [1, Theorem 2.4]. We call such a map a branched covering. If $f^{-1}fB_f = B_f$ and $f \mid B_f$ is a homeomorphism, we say that f is an M-S covering. Throughout, the letter H refers either to Čech or to simplicial homology as the case may be, unless the letter has a superscript.

2. The Dimension Sum Theorem. Let M and N be connected compact metric spaces. Let N have a basis \mathfrak{B} of open sets such that the non-empty finite intersections of basis elements are arcwise connected. Let $f: M \to N$ be a surjective, light, open map such that $f^{-1}(y)$ has at most d elements for any yin N. Let B_f be the set at which f fails to be a local homeomorphism, assume that $f(B_f)$ is the set of points that have less than d inverses and that $f/f^{-1}f(B_f)$ is a homeomorphism. Let $f/(M - f^{-1}f(B_f))$ be a d-to-one covering map and assume that $f^{-1}f(B_f)$ does not separate M locally anywhere. These conditions are satisfied in case M and N are orientable n-manifolds, f is light open, and dim $B_f \leq$ n - 2 [2, 2.4].

The idea of the following construction is to find a covering U of M that maps onto a covering V of N in such a way that the elements of U stack up neatly above those of V and behave reasonably at B_f .

Designate the cardinality of a set A by #A. Let $q \in N$ and let $f^{-1}(q) = \{q_1, \dots, q_k\}, k \leq d$. Let V_q be an element of \mathfrak{B} containing q. Let U_1, \dots, U_r be the components of $f^{-1}(V_q)$. By the arc lifting theorem [9, p. 186, Theorem 2.1], each U_i contains at least one q_i and $f(U_i) = V_q$, thus $r \leq k$.

LEMMA 1. If $y \in V_a - f(B_f)$, then $\#(f^{-1}(y) \cap U_i)$ is independent of y; and, if r = d, then f/U_i is a homeomorphism.

Proof. Let $z \in V_q$ and join z to q by an arc. This arc lifts to one from some point $q_i \in f^{-1}(q) \cap U_i$ to a point, say z_i , of $f^{-1}(z)$. Since U_i is a component of $f^{-1}(V_q)$, U_i contains z_i . Since $f^{-1}f(B_f)$ does not separate U_i , it follows that

Received November 1, 1969. This author was supported in part by Army Research Office-Durham grant ARO-D-31-124-G892, S2.