ORTHOGONALITY RELATIONS FOR A CLASS OF BRENKE POLYNOMIALS

By T. S. Chihara

1. The Brenke type generating functions are the polynomial generating functions of the form

$$
\begin{equation*}
A(w) B(x w)=\sum_{n=0}^{\infty} P_{n}(x) w^{n} \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
A(w)=\sum_{k=0}^{\infty} a_{k} w^{k}, & a_{0} \neq 0 \\
B(w)=\sum_{k=0}^{\infty} b_{k} w^{k}, & b_{k} \neq 0 \quad \text { for } k \geq 0
\end{array}
$$

Thus the corresponding Brenke polynomials are

$$
\begin{equation*}
P_{n}(x)=\sum_{k=0}^{n} a_{n-k} b_{k} x^{k} . \tag{2}
\end{equation*}
$$

In [1] we determined all pairs $(A(w), B(w))$ for which $\left\{P_{n}(x)\right\}$ is an orthogonal polynomial sequence (OPS). The resulting classes of OPS consisted of: (i) Laguerre polynomials; (ii) Szegö's generalized Hermite polynomials; (iii) a class of generalized Stieltjes-Wigert polynomials; (iv) a class of polynomials first encountered by H. S. Wall; (v) a symmetric OPS related to the Wall polynomials; (vi) two related sets of orthogonal q-polynomials studied by W. A. Al-Salam and L. Carlitz; (vii) an OPS for which we were unable to find explicit orthogonality relations. (We refer the reader to [1] for more explicit descriptions of these polynomials as well as references.)

The polynomials in (vii) are generated by (1) with

$$
\begin{gather*}
a_{2 m}=a_{2 m+1}=\frac{(-1)^{m} q^{m(m+1) / 2}}{[q]_{m}} \tag{3}\\
b_{2 m}=\frac{1}{[q]_{m}[b]_{m}}, \quad b_{2 m+1}=\frac{1}{[q]_{m}[b]_{m+1}} \\
\left(q \neq 0,1 ; b \neq 0 ; b q^{m} \neq 1 \quad \text { for } m=0,1,2, \cdots\right),
\end{gather*}
$$

where we have used the notation

$$
[a]_{o}=1, \quad[a]_{m}=(1-a)(1-a q) \cdots\left(1-a q^{m-1}\right)(m \geq 1)
$$

Received October 7, 1969.

