ON BASES FOR THE SET OF INTEGERS

By C. T. Long and N. Woo

1. Introduction. Let A be a set of m distinct integers with $0 \varepsilon A$ and $m \geq 2$. The notions of simple and non-simple A-bases were introduced by de Bruijn in a paper [2] in which he discusses the case $A=\{0,1\}$ in some detail. For this special case, he also introduces the notion of a basic sequence giving some necessary and some sufficient conditions that a sequence be basic and giving special attention to periodic basic sequences of period 2. This latter discussion is continued in [3]. In the present paper, we generalize the notion of an A-base to that of an \mathbb{Q}-base where $\mathbb{Q}=\left\{A_{i}\right\}_{i \geq 1}$ and each A_{i} is a set of m_{i} distinct integers with $0 \varepsilon A_{i}$ and $m_{i} \geq 2$ for all i. The structure of \mathbb{Q}-bases is studied and rather general methods of constructing simple and non-simple a-bases are given.

We begin by introducing the necessary definitions and notation.
Definition 1. Let $\mathfrak{Q}=\left\{A_{i}\right\}_{i \geq 1}$ where the A_{i} are as above. The integral sequence $B=\left\{b_{i}\right\}_{i \geq 1}$ is called an \mathbb{Q}-base provided that every integer n can be represented uniquely in the form

$$
n=\sum_{i=1}^{r(n)} a_{i} b_{i}, a_{i} \varepsilon A_{i} \quad \forall i .
$$

If B can be written (with possible rearrangement) in the form $B=\left\{d_{i} M_{i-1}\right\}_{i \geq 1}$ where the d_{i} are integers and where $M_{0}=1$ and $M_{i}=\prod_{i=1}^{i} m_{j}$ for $i \geq 1$, then it is called a simple a-base.

Definition 2. If the sequence $B=\left\{b_{i}\right\}_{i \geq 1}$ is an Q-base and $A_{i}=A$ for all i, then B is called an A-base.

Finally, if m is an integer and A is a set of integers, by $m A$ we mean the set $S=\{s \mid s=m a, a \varepsilon A\}$.
2. Simple \mathfrak{a}-bases. The fact that simple \mathfrak{a}-bases exist is an immediate consequence of the fact that every integer n can be represented uniquely in the form

$$
\begin{equation*}
n=\sum_{i=1}^{r(n)}(-1)^{s i} a_{i} M_{i-1}, 0 \leq a_{i}<m_{i} \text { for all } i \tag{1}
\end{equation*}
$$

where m_{i} and M_{i} are as above for all i and $\left\{s_{i}\right\}_{i \geq 1}$ is a sequence of zeros and ones containing infinitely many of each. That such representations exist seems first to have been proved by J. L. Brown [1].

Received November 7, 1969. The first author was supported by NSF grant GP-7114.

