TRACE FUNCTIONS, I

By Russell Merris

- 1. Introduction. It is the purpose of this paper to introduce a natural generalization of the trace of a matrix. An application to partitioned hermitian matrices is given.
- 2. A generalization of trace. Let F be the field of complex numbers. Let V be a unitary space over F of dimension n. Denote by $M_n(F)$ the set of $n \times n$ matrices over F. Let G be a subgroup of order r of the symmetric group S_n and suppose $\chi: G \to F$ is a character of degree m.

Define $T_x^{\sigma}: M_n(F) \to F$ as follows: For any $A = (a_{ij})$ in $M_n(F)$,

$$T_{\chi}^{G}(A) = \sum_{\sigma \in G} \chi(\sigma) \sum_{t=1}^{n} a_{t\sigma(t)}.$$

If G is the singleton group and χ is of degree one, then T_{χ}^{σ} is the trace. We list some trivial facts as lemmas.

- 2.1 Lemma. T_x^g is a linear functional on $M_n(F)$.
- 2.2 Lemma. Let $\bar{\chi}(\sigma) = \overline{\chi(\sigma)}$; then

$$T_{\chi}^{\sigma}(A^T) = T_{\bar{\chi}}^{\sigma}(A) = \overline{T_{\chi}^{\sigma}(\bar{A})}, \quad and \quad T_{\chi}^{\sigma}(A^*) = \overline{T_{\chi}^{\sigma}(A)};$$

 $(A^T \text{ is the transpose of } A, \overline{A} = (\overline{a}_{ij}), \text{ and } A^* = \overline{A^T}).$

2.3 Lemma. $T_{\chi}^{G}(B^*A) = \overline{T_{\chi}^{G}(A^*B)}$.

Let $f: M_n(F) \to F$ be defined as follows: $f(A) = \sum_{i,j=1}^n a_{ij}$.

2.4 Lemma. If $H \in M_n(F)$ is positive semidefinite (positive definite) hermitian [2], then $f(H) \geq 0$ (f(H) > 0).

Proof. Let $e = (1, \dots, 1)$. Then $eHe^T = f(H)$.

When $\sigma \in S_n$, let $P(\sigma) \in M_n(F)$ be the matrix whose i, j-th element is $\delta_{i,\sigma(i)}$. Let $C(\chi, G) = \sum_{\sigma \in G} \chi(\sigma) P(\sigma)$.

2.5 Lemma. $C(\chi, G) = C(\chi, G)^*$.

Proof. $C(\chi, G)^* = \sum_{\sigma \in G} \overline{\chi(\sigma)} P(\sigma)^T = \sum_{\sigma \in G} \chi(\sigma^{-1}) P(\sigma^{-1}).$

2.6 Lemma. If χ is irreducible, then $C(\chi, G)^2 = (r/m)C(\chi, G)$.

Received September 19, 1969; in revised form October 16, 1970. This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D. C.