PAIRS OF RELATIVELY PRIME INTEGERS IN RESIDUE CLASSES AND BINARY COMPOSITIONS

By Eckford Cohen

1. Introduction. Letting b_{1}, b_{2}, r denote integers, $r>0$, and x, y real numbers, $y \geq x \geq 1$, we define $U_{r}(x, y)=U_{r}\left(x, y ; b_{1}, b_{2}\right)$ to be the number of pairs $\left\{a_{1}, a_{2}\right\}$ of positive, relatively prime integers, a_{1}, a_{2}, such that $a_{1} \leq x, a_{2} \leq y$, and $a_{1} \equiv b_{1}(\bmod r), a_{2} \equiv b_{2}(\bmod r)$. It was proved in [2] that if $\left(b_{1}, b_{2}, r\right)=1$, then

$$
\begin{equation*}
U_{r}(x, y)=6 x y / \pi^{2} J(r)+O(y \log x / r)+O(x) \tag{1.1}
\end{equation*}
$$

uniformly in b_{1}, b_{2}, where $J(r)$ is the Jordan totient function of order 2. Evidently, if $\left(b_{1}, b_{2}, r\right) \neq 1$, then $U_{r}(x, y)=0$ for all x, y.
For positive integers $m, n, m \leq n$, define $Q(m, n)$ to be the number of ordered sets of positive integers, $x_{1}, x_{2}, y_{1}, y_{2}$, such that

$$
\begin{equation*}
\{m, n\}=\left\{x_{1}, x_{2}\right\}+\left\{y_{1}, y_{2}\right\}, \quad\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)=1 . \tag{1.2}
\end{equation*}
$$

In the paper [2] it was proved as an application of (1.1) that

$$
Q(m, n)=\alpha(m, n) m n+ \begin{cases}O\left(n \log ^{2} m\right) & \text { if } n \geq m^{2} \tag{1.3}\\ O\left(m \sqrt{n} \log ^{2} m\right) & \text { if } n \leq m^{2}\end{cases}
$$

where $\alpha(m, n)$ is a function whose values are contained between positive bounds. In the case $n \geq m^{2}$, this result represents an improvement by a logarithmic factor over an estimate proved by a different method in an earlier paper [1]. It had also been proved in [1] by the same method that for all $\epsilon>0$,

$$
\begin{equation*}
Q(m, n)=\alpha(m, n) m n+O\left((m n)^{\mathfrak{q}+\epsilon}\right) \tag{1.4}
\end{equation*}
$$

if $n \leq m^{2}$. Thus, in general, the estimate (1.3) in case $n \leq m^{2}$ is inferior to the previous result (1.4).

In the present paper we prove the refinement of (1.1) contained in Theorem 1 (§2). This result is applied to $\S 3$ to prove an improved estimate for $Q(m, n)$ in case $n \leq m^{2-a}$, where $a>0$ (Theorem 2). In particular, it is shown that in this case (1.4) is true with $\epsilon=0$. In $\S 4$ we obtain, on the basis of (1.1), bounds for the smallest relatively prime pair of integers in two residue classes $(\bmod r)$.

The question of the density of relatively prime integers in congruence classes is considered in §5.

The methods of the paper are entirely elementary. In §§2 and 3 we assume some of the preliminary formulas proved in [2].

Received July 22, 1969. This research was partially supported by a grant from the National Science Foundation (G-19012).

