THE NUMBER OF SOLUTIONS OF CERTAIN SYSTEMS OF EQUATIONS IN A FINITE FIELD

By Robert G. Van Meter

1. Introduction. Let $Z\left(Z^{+}\right)$be the set of integers (positive integers). We restrict h, i, j, k and l to Z and restrict m, n and r to Z^{+}. Let K be a finite field with q elements. If $a \in K$, f is a polynomial in X_{1}, \cdots, X_{r} over $K, \mathbf{y}={ }_{\mathrm{df}}\left(y_{1}, \cdots, y_{r}\right)$ and each y_{i} is a variable with domain K, then

$$
N_{r}[f(\mathbf{y})=a]=\#\left\{\mathbf{c} \boldsymbol{\varepsilon} K^{r}: f(\mathbf{c})=a\right\} .
$$

We often abbreviate " $N_{r}[f(\mathrm{y})=a]$ " to " $N_{r}[f=a]$ " or " $N[f=a]$ ". Similar notation is used for the number of solutions of any open sentence in r variables each having domain K. In any context, the indeterminates (and corresponding variables) are distinct.

We consider the system of equations

$$
\begin{equation*}
\&_{i=1}^{m}\left(\sum_{i=1}^{n} a_{i j} f_{j}\left(\mathbf{x}_{i}\right)=a_{i, n+1}\right) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i j} \varepsilon K \quad \text { for all } \quad(i, j) \varepsilon[1, m] \times[1, n+1], \tag{1.2}
\end{equation*}
$$

for all $j \varepsilon[1, n], r_{j} \varepsilon Z^{+}\left(\right.$and $\left.R(n)={ }_{\text {df }} \sum_{j=1}^{n} r_{j}\right), A_{j}={ }_{d f} q^{r_{j}-1}, f_{i}$ is a κ-polynomial in $X_{i 1}, \cdots, X_{i r_{i}}$ over K with $N_{r_{i}}\left[f_{i}=a\right]=$ $A_{i}+\kappa(a) B_{j}$ for all $a \varepsilon K, \mathbf{x}_{i}={ }_{\mathrm{df}}\left(x_{i 1}, \cdots, x_{i r_{i}}\right)$, each $x_{i k}$ is a variable with domain K,
and, of course,
(1.4) for all $i \varepsilon[1, m](j \varepsilon[1, n])$, there exists $j \varepsilon[1, n](i \varepsilon[1, m])$ such that $a_{i j} \neq 0$.

We consider the problem of determining $N_{R(n)}[(1.1)]$ subject to (1.2)-(1.4).
Carlitz [2], making use of exponential sums, determined $N[(1.1)$] in case $m=2$, the $a_{i j}$ are subject to certain restrictions and the f_{j} are specific κ-polynomials (certain quadratic forms).

Corson [4], using entirely different methods, determined $N[(1.1)$] for arbitrary $a_{i j}$ and f_{j} subject to (1.2)-(1.4) in case $m=2$ and $n>2$.

In this paper we generalize some of Corson's results. We devote §2 to κ polynomials; in particular, Theorem 2.6 gives $N[(1.1)]$ in case $m=1$. In

[^0]
[^0]: Received June 9, 1969. This paper was written while the author was supported by a faculty research grant from Florida Presbyterian College. It is a revision of a doctoral thesis submitted to Duke University. The author is indebted to Professor Carlitz for suggesting the problem.

