THE NUMBER OF SOLUTIONS OF CERTAIN SYSTEMS OF EQUATIONS IN A FINITE FIELD

BY ROBERT G. VAN METER

1. Introduction. Let $Z(Z^+)$ be the set of integers (positive integers). We restrict h, i, j, k and l to Z and restrict m, n and r to Z^+ . Let K be a finite field with q elements. If $a \in K$, f is a polynomial in X_1, \dots, X_r over $K, \mathbf{y} =_{df} (y_1, \dots, y_r)$ and each y_i is a variable with domain K, then

$$N_r[f(\mathbf{y}) = a] = \#\{\mathbf{c} \in K^r : f(\mathbf{c}) = a\}$$

We often abbreviate " $N_r[f(\mathbf{y}) = a]$ " to " $N_r[f = a]$ " or "N[f = a]". Similar notation is used for the number of solutions of any open sentence in r variables each having domain K. In any context, the indeterminates (and corresponding variables) are distinct.

We consider the system of equations

(1.1)
$$\bigotimes_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} f_j(\mathbf{x}_j) = a_{i,n+1} \right),$$

where

(1.2)
$$a_{ii} \varepsilon K$$
 for all $(i, j) \varepsilon [1, m] \times [1, n+1]$,

(1.3) for all $j \in [1, n]$, $r_j \in Z^+$ (and $R(n) =_{df} \sum_{i=1}^n r_i$), $A_i =_{df} q^{r_i - 1}$, f_i is a κ -polynomial in X_{i1} , \cdots , X_{ir_i} over K with $N_{r_i}[f_i = a] =$ $A_i + \kappa(a)B_i$ for all $a \in K$, $\mathbf{x}_i =_{df} (x_{i1}, \cdots, x_{ir_i})$, each x_{ik} is a variable with domain K,

and, of course,

(1.4) for all $i \in [1, m]$ $(j \in [1, n])$, there exists $j \in [1, n]$ $(i \in [1, m])$ such that $a_{ij} \neq 0$.

We consider the problem of determining $N_{R(n)}[(1.1)]$ subject to (1.2)-(1.4).

Carlitz [2], making use of exponential sums, determined N[(1.1)] in case m = 2, the a_{ij} are subject to certain restrictions and the f_i are specific κ -polynomials (certain quadratic forms).

Corson [4], using entirely different methods, determined N[(1.1)] for arbitrary a_{ij} and f_j subject to (1.2)-(1.4) in case m = 2 and n > 2.

In this paper we generalize some of Corson's results. We devote §2 to κ -polynomials; in particular, Theorem 2.6 gives N[(1.1)] in case m = 1. In

Received June 9, 1969. This paper was written while the author was supported by a faculty research grant from Florida Presbyterian College. It is a revision of a doctoral thesis submitted to Duke University. The author is indebted to Professor Carlitz for suggesting the problem.