SIMULTANEOUS LINEAR FACTORS OF A BINOMIAL (MOD M)

By Martin R. Bates and Frank R. Olson

1. Introduction. It is a well-known consequence of Fermat's Theorem [3; 63, Theorem 72] that $x^{\phi(M)}-1 \equiv 0(\bmod M)$ has $\phi(M)$ distinct roots corresponding to the set of numbers less than and relatively prime to M. But this does not imply that $x^{\phi(M)}-1$ has $\phi(M)$ simultaneous linear factors $(\bmod M)$ [3; 99]. In particular, if $M=9$, it may be shown that $x^{6}-1 \equiv(x-1)(x-2)$ $\left(x^{4}+3 x^{3}+7 x^{2}+6 x+4\right)(\bmod 9)$, where the quartic expression has no linear factors $(\bmod 9)$. Alternative choices of linear factors for $x^{6}-1$ give rise to similar quartic factors which have no linear factors. However, there are related cases where relatively many linear factors appear. For example, since -3 is a primitive 10 -th root of unity $(\bmod 121), x^{10}-1 \equiv \prod_{i=1}^{10}\left(x-(-3)^{i}\right)$ $(\bmod 121)$. Thus $x^{10}-1$ has a full complement of ten linear factors, $(\bmod 121)$. These facts led us to examine the simultaneous linear factors of the binomial expression $x^{m}-1(\bmod M)$. This investigation supplements some results by Bauer [1], who discussed the cases $m=\phi(n), M \mid n$, such that the binomial expression has a full complement of m linear factors.

In particular, if $M=p^{n}$ and $m=\phi\left(p^{r}\right)$, (where p is an odd prime, and $0<r \leq n)$, we show that factorizations of $x^{m}-1(\bmod M)$ exist with $p-1$ linear factors $\left(x-a_{k}\right), 1 \leq k \leq p-1$; where the a_{k} are appropriate representatives of the respective residue classes $1,2,3, \cdots p-1(\bmod p)$. Furthermore, no factorizations exist with more than $p-1$ linear factors in these cases.

We also show that for $M=p^{n}$ and $m=p^{s} \phi\left(p^{n}\right), s \geq 1$, factorizations exist with p^{8} linear factors $\left(x-a_{k}\right)$ corresponding to each of the $p-1$ residue classes $a_{k} \equiv k(\bmod p)$ and that no such factorizations exist with $p^{s}+1$ linear factors $\left(x-a_{k}\right)$ belonging to a given residue class $a_{k} \equiv k(\bmod p)$. The corresponding results for the case $M=2^{n}$ are also presented. In the course of this discussion, a generalization of Lagrange's Theorem [3; 86-87, Theorem 112] is provided as follows:

Theorem 1. If $a_{i} \equiv j(\bmod p)$, where p is prime, then

$$
\begin{equation*}
x^{\phi\left(p^{n}\right)}-1 \equiv \prod_{i=1}^{p-1}\left(x^{p^{n-1}}-a_{i}^{p^{n-1}}\right)\left(\bmod p^{n}\right) \tag{1}
\end{equation*}
$$

2. Residue classes involving prime power exponentiation. We shall make liberal use of the fact [3; 65, Theorem 78] that $a \equiv b\left(\bmod p^{r}\right)$ implies $a^{p^{t}} \equiv b^{p^{t}}$ $\left(\bmod p^{r+t}\right)$. In fact, the slightly sharper result given in Lemma 1 will be needed.

Received May 2, 1969. Mr. Bates is a graduate student at the State University of New York at Buffalo. Professor Olson was a faculty member of that institution when this research was initiated.

