AN INTEGRAL EQUATION WITH BESSEL FUNCTION KERNEL

BY KUSUM SONI

The convolution type of integral equation

$$g(x) = \int_0^x (x - y)^{\alpha/2} J_{\alpha} [2\sqrt{k(x - y)}] f(y) \, dy$$

occurs frequently in the solution of dual integral equations. A formal solution of this was given by Burlak [2] and later by Srivastav [9]. Bharatiya gave a set of sufficient conditions under which the inversion exists [1]. Here we give fairly simple necessary and sufficient conditions that the solution may be square integrable.

1. Let $\mathfrak{h}_{\alpha}f$ denote the Hankel transform of f in the form used by Tricomi, i.e.

$$\mathfrak{h}_{\alpha}f = \mathfrak{h}_{\alpha}\{f(y); x\} = \int_{0}^{\infty} J_{\alpha}[2\sqrt{xy}]f(y) \, dy.$$

It is well known that if f is in $L_2(0, \infty)$, then so is $\mathfrak{h}_{\alpha} f$ which exists in the mean square sense [5; 213]. Also let $L_2^{(\nu)}$ denote the set of functions defined by Erdélyi [3; 300]. If $\alpha > 0$, f is in $L_2^{(-\alpha)}$ provided that f is in $L_2(0, \infty)$ and $\phi(t)$, the Mellin transform of f is such that $|t|^{\alpha} \phi(t)$ is in $L_2(-\infty, \infty)$.

Our results can now be stated as follows:

THEOREM A. The solution f of the integral equation

(1)
$$g(x) = \frac{d}{dx} \int_0^x J_0[2\sqrt{k(x-y)}]f(y) \, dy$$

belongs to L_2 $(0, \infty)$ if and only if (i) g(x) is in L_2 $(0, \infty)$ and (ii) $g_1(t) = \mathfrak{h}_0 g$ vanishes in $0 \leq t < a$. Under these conditions

(2)
$$||g|| = ||f||$$

where || || stands for L_2 norm.

THEOREM B. The solution f of the integral equation

(3)
$$h(x) = k^{(1-\alpha)/2} \int_0^x (x-y)^{(\alpha-1)/2} J_{\alpha-1}[2\sqrt{k(x-y)}] f(y) \, dy, \quad \alpha > 0$$

belongs to $L_2(0, \infty)$ if and only if (i) $x^{-\alpha}h(x)$ is in $L_2^{(-\alpha)}$ and (ii) $h_1(t) = \mathfrak{h}_{2\alpha}\{x^{-\alpha}h(x), t\}$ vanishes in $0 \leq t < \alpha$. Under these conditions

Received April 14, 1969.