EXTENDING HOMEOMORPHISMS BETWEEN APPROXIMATING POLYHEDRA

By Robert Craggs

1. Introduction. This is the last in a series of three papers investigating the relation between two locally tame approximations to a topological embedding of a polyhedron in a 3 -manifold. In the first two papers [3], [4] we concentrate our attention on polyhedra with no local cut points. Here we consider arbitrary polyhedra. Our chief result is the following:

Theorem 3.2. Suppose M is a 3-manifold with boundary, K is a polyhedron, K_{a} is a subpolyhedron of K, and f is a homeomorphism of K into M such that $f^{-1}(\mathrm{Bd} M)=K_{a}$.

There is a positive, continuous function ν on K such that if f_{0} and f_{1} are homeomorphisms of K onto locally tame sets in M for which $f_{e}^{-1}(\operatorname{Bd} M)=K_{a}(e=0,1)$ and $\rho\left(f(x), f_{e}(x)\right)<\nu(x)(e=0,1, x \varepsilon K)$, then there are neighborhoods N_{0} of $f_{0}(K)$ and N_{1} of $f_{1}(K)$ in M, and there is a homeomorphism h of N_{0} onto N_{1} such that $h f_{0}=f_{1}$ and $h\left(N_{0} \cap \operatorname{Bd} M\right)=N_{1} \cap \operatorname{Bd} M$.

We also obtain a $p w l$ version of Theorem 3.2.
Our notation conventions are discussed in [3], [4].
2. Homeomorphisms of relative regular neighborhoods of cones. We omit proofs of the first two lemmas here.

Lemma 2.1. Suppose D is a disk, A is an arc whose intersection with D is a point $p \boldsymbol{\varepsilon} \mathrm{Bd} A \cap \operatorname{Int} D, M$ is 3 -manifold with boundary, and f is a homeomorphism of $D \cup A$ into $\operatorname{Int} M$.

There is $a \delta>0$ such that if f_{0} and f_{1} are homeomorphisms of $D \cup A$ into Int M with $d\left(f, f_{e}\right)<\delta(e=0,1)$ and $f_{0}\left|D=f_{1}\right| D$, then $f_{0}(A)$ and $f_{1}(A)$ abut on the same side of $f_{0}(D)$.

Lemma 2.2. Suppose K is a polyhedron, v is a point joinable to K, B_{0} and B_{1} are pwl 3 -cells, and f_{0} and f_{1} are pwl homeomorphisms of $v * K$ into B_{0} and B_{1} such that $f_{e}^{-1}\left(\operatorname{Bd} B_{e}\right)=K$, and B_{e} collapses to $f_{e}(v * K)(e=0,1)$.

Then if h is a pwl homeomorphism of $\mathrm{Bd} B_{0}$ onto $\mathrm{Bd} B_{1}$ so that $h f_{0}\left|K=f_{1}\right| K$, there is an extension of h to a pwl homeomorphism H of B_{0} onto B_{1} such that $H f_{0}=f_{1}$.

Lemma 2.3. Suppose K is a polyhedron, v is a point joinable to K, L is a subpolyhedron of $v * K$ which contains a neighborhood of each non-degenerate component of K, B is a pwl 3-cell, and f is a homeomorphism of $v * K$ into Int B.

Suppose $K=K(1) \cup K(2)$ where $K(1)$ is a non-degenerate component of K.
Received April 10, 1969. Research supported by NSF grants GP 5804 and GP 7952X.

