EXTENDING HOMEOMORPHISMS BETWEEN APPROXIMATING POLYHEDRA

By Robert Craggs

1. Introduction. This is the last in a series of three papers investigating the relation between two locally tame approximations to a topological embedding of a polyhedron in a 3-manifold. In the first two papers [3], [4] we concentrate our attention on polyhedra with no local cut points. Here we consider arbitrary polyhedra. Our chief result is the following:

THEOREM 3.2. Suppose M is a 3-manifold with boundary, K is a polyhedron, K_a is a subpolyhedron of K, and f is a homeomorphism of K into M such that $f^{-1}(\operatorname{Bd} M) = K_a$.

There is a positive, continuous function ν on K such that if f_0 and f_1 are homeomorphisms of K onto locally tame sets in M for which $f_{\epsilon}^{-1}(\operatorname{Bd} M) = K_{a}(e=0,1)$ and $\rho(f(x), f_{\epsilon}(x)) < \nu(x)$ ($e=0,1,x \in K$), then there are neighborhoods N_0 of $f_0(K)$ and N_1 of $f_1(K)$ in M, and there is a homeomorphism h of N_0 onto N_1 such that $hf_0 = f_1$ and $h(N_0 \cap \operatorname{Bd} M) = N_1 \cap \operatorname{Bd} M$.

We also obtain a pwl version of Theorem 3.2.

Our notation conventions are discussed in [3], [4].

- 2. Homeomorphisms of relative regular neighborhoods of cones. We omit proofs of the first two lemmas here.
- Lemma 2.1. Suppose D is a disk, A is an arc whose intersection with D is a point $p \in \text{Bd } A \cap \text{Int } D$, M is 3-manifold with boundary, and f is a homeomorphism of $D \cup A$ into Int M.

There is a $\delta > 0$ such that if f_0 and f_1 are homeomorphisms of $D \cup A$ into Int M with $d(f, f_{\bullet}) < \delta$ (e = 0, 1) and $f_0 \mid D = f_1 \mid D$, then $f_0(A)$ and $f_1(A)$ abut on the same side of $f_0(D)$.

LEMMA 2.2. Suppose K is a polyhedron, v is a point joinable to K, B_0 and B_1 are pwl 3-cells, and f_0 and f_1 are pwl homeomorphisms of v *K into B_0 and B_1 such that $f_{\bullet}^{-1}(\operatorname{Bd} B_{\bullet}) = K$, and B_{\bullet} collapses to $f_{\bullet}(v *K)$ (e = 0, 1).

Then if h is a pwl homeomorphism of Bd B_0 onto Bd B_1 so that $hf_0 | K = f_1 | K$, there is an extension of h to a pwl homeomorphism H of B_0 onto B_1 such that $Hf_0 = f_1$.

Lemma 2.3. Suppose K is a polyhedron, v is a point joinable to K, L is a subpolyhedron of v * K which contains a neighborhood of each non-degenerate component of K, B is a pwl 3-cell, and f is a homeomorphism of v * K into Int B. Suppose $K = K(1) \cup K(2)$ where K(1) is a non-degenerate component of K.

Received April 10, 1969. Research supported by NSF grants GP 5804 and GP 7952X.