THE ESSENTIAL CLOSURE OF AN ARCHIMEDEAN LATTICE-ORDERED GROUP

By PAUL CONRAD

1. Introduction. Throughout this paper *l*-group will always denote an Archimedean lattice-ordered group, and we shall confine our attention to such groups. Suppose that G is an *l*-subgroup of an *l*-group H (that is, G is a subgroup and a sublattice of H). We say that G is large in H or that H is an essential extension of G if for each *l*-ideal $L \neq 0$ of H, $L \cap G \neq 0$, and G is essentially closed if it admits no proper essential extension. An essentially closed essential extension of G will be called an essential closure of G.

Pinsker [11] proved that in the category of complete vector lattices each G admits a unique essential closure, and Jakubik [8] showed that this essential closure can be constructed solely from the underlying lattice structure of G. In this paper we make use of Bernau's representation of an l-group G to prove that G admits a unique essential closure, and thus obtain a new proof of Pinsker's theorem. Moreover, we show that the essential extensions of G are exactly those extensions that preserve the Boolean algebra of all polars of G and so the essential closure is the largest such extension.

An *l*-group A has the *splitting property* if it is a cardinal summand of each *l*-group that contains it as an *l*-ideal (that is, $G = A \boxplus B$, where this is the direct sum and for $a \in A$ and $b \in B$, a + b is positive if and only if both a and b are positive). We show that each essentially closed *l*-group has the splitting property.

An *l*-subgroup G of H is dense if $0 < h \varepsilon H$ implies 0 < g < h for some $g \varepsilon G$. Clearly a dense subgroup is large. We list some examples of dense or essential extensions.

- 1. The (Dedekind MacNeille) completion G^{\wedge} of G.
- 2. The lateral completion G^{i} of G (see below).
- 3. The divisible hull G^d of G.

G is dense in both G^{\wedge} and G^{i} and if $0 < h \in G^{d}$, then $nh \in G$ for some n > 0, so all three are essential extensions of *G*. It follows that an essentially closed *l*-group is complete, laterally complete and divisible, and in §3 we prove the converse and show that $((G^{d})^{\wedge})^{i}$ is the essential closure of *G*.

Since the lateral completion of an *l*-group G is not a well-known concept, we give the definition in full. A subset $\{a_{\lambda} : \lambda \in \Lambda\}$ of G is called *disjoint* if $a_{\alpha} \wedge a_{\beta} = 0$ for each pair $\alpha \neq \beta$, and G is said to be *laterally complete* if each disjoint subset has a least upper bound. In [3] it is shown that for each *l*-group G there exists a unique *l*-group G^{*l*} such that G is a dense *l*-subgroup of G^{*l*}, G^{*l*} is

Received April 3, 1969.