# A NOTE ON REGULAR AND ANTI-REGULAR (WEAKLY) BOREL MEASURES 

By Norman Y. Luther

Introduction. In this note we tie up some loose ends left in [3] by showing more clearly the relationships between regular, anti-regular, and weakly antiregular weakly Borel measures. This note most properly should be considered as an addendum to [3]; we shall use the same notation as in [3] and, in many cases, give specific references to [3] rather than try to restate the needed results.

Preliminaries. Let $\nu, \mu$ be measures on a $\sigma$-ring S. Following [2], we say that $\nu$ is $S$-singular (or weakly singular) with respect to $\mu$, denoted $\nu S \mu$, if for each $E \varepsilon \mathcal{S}$ there is a set $F \varepsilon \mathcal{S}$ such that $F \subset E, \nu(F)=\nu(E)$, and $\mu(F)=0$. (See [3, §1] for properties of $S$-singularity.) $\nu$ is absolutely continuous with respect to $\mu$, denoted $\nu \ll \mu$, if $\nu(E)=0$ whenever $E \varepsilon$ § and $\mu(E)=0[1 ; 124]$.

We assume throughout the remainder of this paper that $X$ is a locally compact, Hausdor.ff topological space. We shall use $@_{,} \mathfrak{B}_{\delta}, \oiint_{w}$, and $\oiint_{\delta w}$ to denote the $\sigma$-rings generated by the compact, compact $G_{\delta}$, closed, and closed $G_{\delta}$ subsets of $X$, respectively. We shall call them the Borel, Baire, weakly Borel (w. B.) and weakly Baire (w. Ba.) subsets of $X$, respectively. Of course, $\mathbb{B}_{\delta} \subset \propto \subset \mathbb{B}_{w}$ and $\otimes_{\delta} \subset \oiint_{\delta w} \subset \otimes_{w}$. Measures defined on these classes of sets which are finite on compact sets will carry the same name.

Let $\nu$ be a w. B. measure on $X$.
(I) $\nu$ is regular if

$$
\nu(E)=L U B\{\nu(C) ; E \supset C \text { compact }\} \text { for all } E \varepsilon \mathbb{B}_{w} .
$$

(II) $\nu$ is anti-regular if $\nu S \nu^{\prime}$ where $\nu^{\prime}$ denotes the unique regular w. B. measure which agrees with $\nu$ on $\mathbb{B}_{\delta}$ [3, Lemma 2.1]. (We call $\nu^{\prime}$ the regular relative of $\nu$.)
(III) $\nu$ is weakly anti-regular if $\lambda=0$ is the only regular w. B. measure $\lambda$ such that $\lambda \leq \nu$.

Every anti-regular w. B. measure is weakly anti-regular, but the converse fails [3, Theorem 5.1 and Example 3.5].

Main results. In [3, Theorem 5.3] it is shown that $\nu S \mu$ for every regular w. B. measure $\nu$ and every weakly anti-regular w. B. measure $\mu$. Our first two results show that this condition characterizes both regular and weakly antiregular w. B. measures.

