A NOTE ON REGULAR AND ANTI-REGULAR (WEAKLY) BOREL MEASURES

BY NORMAN Y. LUTHER

Introduction. In this note we tie up some loose ends left in [3] by showing more clearly the relationships between regular, anti-regular, and weakly antiregular weakly Borel measures. This note most properly should be considered as an addendum to [3]; we shall use the same notation as in [3] and, in many cases, give specific references to [3] rather than try to restate the needed results.

Preliminaries. Let ν , μ be measures on a σ -ring S. Following [2], we say that ν is S-singular (or weakly singular) with respect to μ , denoted $\nu S\mu$, if for each $E \in S$ there is a set $F \in S$ such that $F \subset E$, $\nu(F) = \nu(E)$, and $\mu(F) = 0$. (See [3, §1] for properties of S-singularity.) ν is absolutely continuous with respect to μ , denoted $\nu \ll \mu$, if $\nu(E) = 0$ whenever $E \in S$ and $\mu(E) = 0$ [1; 124].

We assume throughout the remainder of this paper that X is a locally compact, Hausdorff topological space. We shall use $\mathfrak{B}, \mathfrak{B}_{\delta}, \mathfrak{B}_{w}$, and $\mathfrak{B}_{\delta w}$ to denote the σ -rings generated by the compact, compact G_{δ} , closed, and closed G_{δ} subsets of X, respectively. We shall call them the Borel, Baire, weakly Borel (w. B.) and weakly Baire (w. Ba.) subsets of X, respectively. Of course, $\mathfrak{B}_{\delta} \subset \mathfrak{B} \subset \mathfrak{B}_{w}$ and $\mathfrak{B}_{\delta} \subset \mathfrak{B}_{\delta w} \subset \mathfrak{B}_{w}$. Measures defined on these classes of sets which are finite on compact sets will carry the same name.

Let ν be a w. B. measure on X.

(I) ν is regular if

 $\nu(E) = L \ U \ B\{\nu(C); E \supset C \text{ compact}\} \text{ for all } E \ \mathfrak{e} \ \mathfrak{G}_w \ .$

- (II) ν is anti-regular if $\nu S\nu'$ where ν' denotes the unique regular w. B. measure which agrees with ν on \mathfrak{B}_{δ} [3, Lemma 2.1]. (We call ν' the regular relative of ν .)
- (III) ν is weakly anti-regular if $\lambda = 0$ is the only regular w. B. measure λ such that $\lambda \leq \nu$.

Every anti-regular w. B. measure is weakly anti-regular, but the converse fails [3, Theorem 5.1 and Example 3.5].

Main results. In [3, Theorem 5.3] it is shown that $\nu S\mu$ for every regular w. B. measure ν and every weakly anti-regular w. B. measure μ . Our first two results show that this condition characterizes both regular and weakly anti-regular w. B. measures.

Received April 3, 1969.