OPEN SIMPLICIAL MAPS OF SPHERES ON MANIFOLDS

By William L. Reddy

1. Introduction. In this paper we shall consider, up to homology, some questions raised by H. Hopf in [7, Paragraphs 2 and 3]. Let f be an open simplicial map of n-sphere on n-manifold for $n \geq 2$ and let B_{f} be the set of points at which f fails to be a local homeomorphism. Suppose $f \mid f^{-1} f\left(B_{f}\right)$ is a homeomorphism. We prove that in this case B_{f} is a rational ($n-r$)-homology sphere where r is even, and that each torsion coefficient is relatively prime to the degree of f. We use the fact that these maps are pseudocovering maps in the sense of Church and Hemmingsen [1, Definition 5, Theorem 2.4]. These maps may also be considered the simplest examples of Montgomery-Samelson fiberings [8]. We prove that such a map from n-manifold to n-polyhedron P can be considered simplicial provided that $\left[P, f\left(B_{f}\right)\right]$ is a polyhedral pair.

The idea is roughly this: If one could find a periodic homeomorphism of the n-sphere onto itself whose orbits were the sets $f^{-1}(x)$, then B_{f} would be its fixed-point set and could be studied by use of P. A. Smith's theory. Since it is not known that B_{f} is a manifold, or how it might be embedded in the n-sphere, this idea does not work. One can, however, investigate the structure of B_{f} by special homologies analogous to Smith's.

The author is pleased to acknowledge helpful conversations with Professor Erik Hemmingsen who made suggestions and showed the author many instructive examples. Hemmingsen's results [4], [5] on the structure of B_{f} are used crucially in the proof of the main theorem.
2. Special homology. In this section we define some special homology groups motivated by the work of P. A. Smith [9]. We prove a theorem about the dimension of these homology groups as vector spaces over coefficient fields motivated by the work of E. E. Floyd [3].

Definition 1. Let X be a finite simplicial complex and X_{0} a subcomplex. Let $C(X), C\left(X_{0}\right)$ and $C\left(X, X_{0}\right)$ be the integral chain complexes. Let ρ and τ be homomorphisms of the graded group $C(X)$ into itself. Let σ denote either ρ or τ and let $\bar{\sigma}$ denote respectively τ or ρ. Suppose
(A) $\sigma \bar{\sigma}=0$,
(B) $\sigma\left[C\left(X_{0}\right)\right]=0$,
(C) If $\sigma(c)=0$, there is a in $C\left(X, X_{0}\right)$ and b in $C\left(X_{0}\right)$ with $c=\bar{\sigma}(a)+b$,
(D) For any c in $C(X), \partial \sigma(c)-\sigma \partial(c) \varepsilon C\left(X_{0}\right)$,
(E) $\sigma[C(X)] \cap C\left(X_{0}\right)=0$.

Received April 2, 1969. This research was partially supported by NSF grant GP-23105.

