LIE STRUCTURES IN SIMPLE GRADED RINGS

BY RICHARD SPEERS

Herstein and others have proved theorems about the Lie structure of a simple associative ring. This paper is an investigation of what results are obtainable if the ring is graded, and one uses an appropriate definition of simplicity.

A graded ring $R = \bigoplus_{i\geq 0} R_i$ is a simple graded ring (sgr) if $R_i R_i \neq (0)$ for all *i*, *j* and the only homogeneous ideals of *R* are irrelevant. (An irrelevant ideal of a graded ring is one of the form $\bigoplus_{i\geq n} R_i$.)

PROPOSITION 1. Let $\bigoplus_{i\geq 0} R_i$ be a sgr. If $a \in R_i$, $a \neq 0$, then for all i and k we have $R_i a R_k = R_{i+j+k}$.

Proof. Since $T = (\bigoplus_{r \ge i} R_r)a(\bigoplus_{e \ge k} R_e)$ is a homogeneous ideal of R, there either exists n such that $T = \bigoplus_{t \ge n} R_t$ or T = (0). If $T = \bigoplus_{t \ge n} R_t$, then $R_i a R_k = R_n$, and so $R_i a R_k = R_{i+i+k}$. Suppose T = (0), and let $S = \{a \in R_i : R_i a R_k = (0)\}$. S is clearly an additive subgroup of R, and if $c \in R_0$, $a \in S$, then $R_i c a R_i \subseteq R_i R_0 a R_i = R_i a R_i = (0)$. Hence, $ca \in S$; that is, S is a left R_0 -module. Thus, $S + \bigoplus_{r \ge i+1} R_r$ is a non-zero homogeneous ideal of R, so there exists n such that $S + \bigoplus_{r \ge i+1} R_r = \bigoplus_{t \ge n} R_t$. This implies that $S = R_i$. Hence, $(0) = R_i R_i R_k = R_{i+i} R_k$, contradicting the simplicity of R.

If R is a sgr, then $aR_0b = (0)$ with a and b homogeneous implies that a = 0or b = 0. For, if $a \in R_i$, $b \in R_k$ we have $R_0aR_0bR_0 = (0)$, so $R_ibR_0 = (0)$, and so $R_{i+k} = (0)$, a contradiction.

Let $R = \bigoplus R_i$ be a graded ring. If $x \in R_a$, $y \in R_b$ the Lie product (Jordan product) of x and y is defined by $[x, y] = xy - (-1)^{ab}yx((x, y) = xy + (-1)^{ab}yx)$. Requiring that the product by bi-additive extends the definition to all of R. For ease of notation we write $[x, y] = xy - (-1)^{xy}yx$ if x and y are homogeneous. [x, y] satisfies a Jacobi identity [4; 6]

 $(-1)^{ac}[[a, b], c] + (-1)^{bc}[[c, a], b] + (-1)^{ab}[[b, c], a] = (0).$

The following identities will also be used:

$$[a, bc] = [a, b]c + (-1)^{ab}b[a, c]$$

$$[ab, c] = a[b, c] + (-1)^{bc}[a, c]b.$$

If R is a simple ring, its center Z(R) is a field, a very useful fact. This is clearly not true in a sgr; for, let R = k[X], where k is a field and R is provided

Received February 10, 1969. This paper is part of a doctoral thesis submitted to the Graduate School of the University of Kansas. The author wishes to express his appreciation of Professor Paul J. McCarthy under whom the thesis was written.