
LIE STRUCTURES IN SIMPLE GRADED RINGS

By RICHARD SPEERS

tterstein and others have proved theorems about the Lie structure of a
simple associative ring. This paper is an investigation of what results are
obtainable if the ring is graded, and one uses an appropriate definition of sim-
plicity.
A graded ring R (_>o R is a simple graded ring (sgr) if RR (0) for

all i, j and the only homogeneous ideals of R are irrelevant. (An irrelevant
ideal of a graded ring is one of the form (>_ R .)

PROPOSiTiON 1. Let >_o R, be a sgr. I] a R a O, then ]or all i and 1
we have RaR R++

Proo]. Since T (r>_, Rr)a(.>_ Ro) is a homogeneous ideal of R, there
either exists n such that T (,>_.R, or T (0). If T (t>_,R, ,then
RaR R., and so RaR R++. Suppose T (0), and let S {a R
RaR (0) }. S is clearly an additive subgroup of R, and if c Ro, a S, then
R,caR RRoaR,. RaR (0). Hence, ca S; that is, S is a left Ro-module.
Thus, S + (_>+1R is a non-zero homogeneous ideal of R, so there exists n such
that S -4- (>_+1 R (,>_. R,. This implies that S R. Hence, (0)
RRR R+;R, contradicting the simplicity of R.

If R is a sgr, then aRob (0) with a and b homogeneous implies that a 0
or b 0. For, if a R;, b R we have RoaRobRo (0), so RbRo (0), and
so R;+ (0), a contradiction.

Let R ( R be a graded ring. If x Ra, y e R the Lie product (Jordan
product) of x and y is defined by [x, y] xy (- 1)"yx((x, y) xy + (- 1)byx).
Requiring that the product by bi-additive extends the definition to all of R.
For euse of notution we write [x, y] xy (- 1)’yx if x nd y are homogeneous.
[x, y] satisfies a Jacobi identity [4; 6]

(--1)"[[a, b], c] -4- ( --1) [[c, a], b] -4- (-1)"[[b, c], a] (0).

The following identities will also be used:

[a, bc] [a, b]c + (-1)b[a, c]

[ab, c] a[b, c] -4- (-1)[a, c]b.

If R is a simple ring, its center Z(R) is a field, a very useful fact. This is
clearly not true in a sgr; for, let R k[X], where k is a field and R is provided
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