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1. The identities in question are

(1.1) IX (1 xT")(1 x7"-3)(1 x"-’) A ., x"" xlx3 x,_,
n-1 n-O X2X4X6 X4n

(1.2) II (1 xn)(1 x’-)(1 x’-) A _, x’’’+1, XlX3 x,,-1,_
0 X2X4X6 d’4n

(1.3) II (1 zTn)(1 z"-l)(1 z7"-") A ’ x2"(’+1’ xlx3.., x.,,+l

,-1 n-O X2X4X6 X4n+2

where

A= II(1-x)
k’l

x.= 1--x" (n 1, 2, 3, ...).

The identities were first proved by Rogers [3], [4] and rediscovered by Sel-
berg [5]. Simpler proofs were given later by Dyson [2]. The present writer [1]
has recently given a simple proof of the Rogers-Ramanujan identities that
makes use of some properties of the "basic" Bessel function I.(0 defined by

(1.4) 1-I (1 A- xnat)(1 A- x"a-lt) _, aI,(t).
0

The object of the present paper is to give a similar proof of (1.1), (1.2) and (1.3).

it follows easily from (1.4) that

(2.1)

(2.2)

where as usual

(a)o-- 1,

We shall require some easily proved properties of I,(t). In the first place

(a). (1 a)(1 xa) (1 (n 1,2,3, ...)
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