SOME IDENTITIES IN COMBINATORIAL ANALYSIS

By L. Carlitz

1. The identities in question are

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1-x^{7 n}\right)\left(1-x^{7 n-3}\right)\left(1-x^{7 n-4}\right)=A \sum_{n=0}^{\infty} x^{2 n^{2}} \frac{x_{1} x_{3} \cdots x_{2 n-1}}{x_{2} x_{4} x_{6} \cdots x_{4 n}} \tag{1.1}\\
& \prod_{n=1}^{\infty}\left(1-x^{7 n}\right)\left(1-x^{7 n-2}\right)\left(1-x^{7 n-5}\right)=A \sum_{n=0}^{\infty} x^{2 n(n+1)} \frac{x_{1} x_{3} \cdots x_{2 n-1}}{x_{2} x_{4} x_{6} \cdots x_{4 n}} \tag{1.2}\\
& \prod_{n=1}^{\infty}\left(1-x^{7 n}\right)\left(1-x^{7 n-1}\right)\left(1-x^{7 n-6}\right)=A \sum_{n=0}^{\infty} x^{2 n(n+1)} \frac{x_{1} x_{3} \cdots x_{2 n+1}}{x_{2} x_{4} x_{6} \cdots x_{4 n+2}} \tag{1.3}
\end{align*}
$$

where

$$
A=\prod_{k=1}^{\infty}\left(1-x^{2 k}\right)
$$

and

$$
x_{n}=1-x^{n} \quad(n=1,2,3, \cdots)
$$

The identities were first proved by Rogers [3], [4] and rediscovered by Selberg [5]. Simpler proofs were given later by Dyson [2]. The present writer [1] has recently given a simple proof of the Rogers-Ramanujan identities that makes use of some properties of the "basic" Bessel function $I_{n}(t)$ defined by

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(1+x^{n} a t\right)\left(1+x^{n} a^{-1} t\right)=\sum_{n=-\infty}^{\infty} a^{n} I_{n}(t) \tag{1.4}
\end{equation*}
$$

The object of the present paper is to give a similar proof of (1.1), (1.2) and (1.3).
2. We shall require some easily proved properties of $I_{n}(t)$. In the first place it follows easily from (1.4) that

$$
\begin{align*}
I_{2 k}(t) & =x^{k 2} \sum_{n=0}^{\infty} \frac{x^{n(n-1)} t^{2 n}}{(x)_{n+k}(x)_{n-k}}, \tag{2.1}\\
I_{2 k+1}(t) & =x^{k(k+1)} \sum_{n=0}^{\infty} \frac{x^{n^{2}} t^{2 n+1}}{(x)_{n+k+1}(x)_{n-k}}, \tag{2.2}
\end{align*}
$$

where as usual

$$
(a)_{0}=1, \quad(a)_{n}=(1-a)(1-x a) \cdots\left(1-x^{n-1} a\right) \quad(n=1,2,3, \cdots)
$$

Received January 31, 1969. Supported in part by NSF grant GP-7855.

