CONTRACTED IDEALS IN KRULL DOMAINS

By Robert Gilmer

In [3], Gilmer and Mott prove the following result. (See Remark 6 of [3]; also, consult [3] for the definitions of properties C and ξ.)

Suppose that D is a Prüfer domain, that S is a unitary overring of D in which each nonzero element of D is regular, and that D has property C with respect to S. Then D has property ξ with respect to S.

The purpose of this paper is to prove that this result from [3] remains valid if the condition that D is a Prüfer domain is replaced by the assumption that D is a Krull domain-that is, an integral domain which can be written as the intersection of a family $\left\{V_{\lambda}\right\}_{\lambda_{\varepsilon} \Lambda}$ of rank one discrete valuation overrings of D such that each nonzero element of D is a nonunit in only finitely many V_{λ} 's. The basic theory of Krull domains is given in [2; §35] and in [6; §33], and we shall use freely the results on Krull domains contained in these two references.

Our first lemma uses this terminology: If A and B are ideals of a ring R, we say that B is prime to A if $A: B=A$; if $b \varepsilon R$, then b is prime to A is defined to mean $A: b=A$, while b is prime to a, where $a \varepsilon R$, means $(a): b=(a)$. If A admits a shortest representation $A=\bigcap_{i=1}^{n} Q_{i}$ in R, where Q_{i} is P_{i}-primary, and if B is finitely generated, then B is not prime to A if and only if $B \subseteq P_{i}$ for some i. (Compare with $[8 ; 36]$.) If R has an identity and if a and b are regular in R, then b prime to a implies that a is prime to b, and either condition is equivalent to the validity of the equality $(a) \cap(b)=(a b)$. In particular, if D is a Krull domain and if $\left\{P_{\lambda}\right\}_{\lambda_{\varepsilon} \Lambda}$ is the set of minimal prime ideals of D, then given $d \varepsilon D-\{0\}$, (d) has a unique shortest representation as an intersection of symbolic powers of a finite set of P_{λ} 's; thus if $a, b \varepsilon D-\{0\}$, then a is prime to b if and only if a and b belong to no common P_{λ}.

Lemma 1. Suppose that R is a ring with identity and that $f=a_{1} X_{1}+\cdots+$ $a_{n} X_{n}-a$ and $g=b_{1} X_{1}+\cdots+b_{n} X_{n}-b$ are elements of $R\left[X_{1}, \cdots, X_{n}\right]$ such that a_{1} and b_{1} are regular in R and a_{1} is prime to b_{1}. Then any solution $X_{i}=r_{i}$, $2 \leq i \leq n$, of the equation $b_{1} f-a_{1} g=0$ over R determines a unique value r_{1} of X_{1} such that $X_{i}=r_{i}, 1 \leq i \leq n$, is a solution of the system $f=g=0$ over R.

Proof. By hypothesis, $t=b_{1}\left(a-a_{2} r_{2}-\cdots-a_{n} r_{n}\right)=a_{1}\left(b-b_{2} r_{2}-\right.$ $\left.\cdots-b_{n} r_{n}\right) \varepsilon\left(b_{1}\right) \cap\left(a_{1}\right)=\left(b_{1} a_{1}\right)$-say $t=r_{1} b_{1} a_{1}$, where $r_{1} \varepsilon R$. Then since a_{1} and b_{1} are regular in $R, a-a_{2} r_{2}-\cdots-a_{n} r_{n}=r_{1} a_{1}$ and $b-b_{2} r_{2}-\cdots-$ $b_{n} r_{n}=r_{1} b_{1}$ so that $X_{i}=r_{i}, 1 \leq i \leq n$, is a solution of the system $f=g=0$

Received December 12, 1968. The author was supported by National Science Foundation Grant GP-8424 while this research was done.

