ON THE BOUNDARY CORRESPONDENCE UNDER CONFORMAL MAPPING

By J. E. McMillan

Let w = f(z) be a function mapping the disc $\{|z| < 1\}$ one-to-one and conformally onto a plane domain D. It is well known that for almost every $\theta(0 \le \theta < 2\pi)f(z)$ has a finite radial limit $f(e^{i\theta})$ at $e^{i\theta}$, and consequently the image under f(z) of the radius at $e^{i\theta}$ determines an (ideal) accessible boundary point a_{θ} of D whose complex coordinate $w(a_{\theta}) = f(e^{i\theta})$ is finite. The set of all such a_{θ} is denoted by \mathfrak{A} . We prove that if a subset \mathfrak{E} of \mathfrak{A} has a certain rather general geometrical property, then $\{\theta: a_{\theta} \in \mathfrak{E}\}$ is a set of measure zero, and we apply this result to prove that for almost every θ , D is in a sense of area large arbitrarily near a_{θ} .

Fix $w_0 \, \varepsilon \, D$, and choose $r_0 > 0$ such that $|w_0 - w(\mathfrak{a})| > r_0$ for each $\mathfrak{a} \, \varepsilon \, \mathfrak{A}$. For each $\mathfrak{a} \, \varepsilon \, \mathfrak{A}$ and r satisfying $0 < r \leq r_0$ there exists a unique component $\gamma(\mathfrak{a}, r)$ of $D \cap \{|w - w(\mathfrak{a})| = r\}$ that separates \mathfrak{a} from w_0 and can be joined to \mathfrak{a} by an open Jordan arc lying in $D \cap \{|w - w(\mathfrak{a})| < r\}$. According to the lemma given below, there corresponds to each $\mathfrak{a} \, \varepsilon \, \mathfrak{A}$ an at most countable subset $N(\mathfrak{a})$ of the open interval $(0, r_0)$ having no accumulation point except possibly 0 such that for each $r \, \varepsilon \, (0, r_0)$ the set

(1)
$$U(\mathfrak{a}, r) = \bigcup_{r' \in (0, r) - N(\mathfrak{a})} \gamma(\mathfrak{a}, r')$$

is open. Note that $U(\mathfrak{a}, r)$ is contained in the component of $D \cap \{|w - w(\mathfrak{a})| < r\}$ through which \mathfrak{a} is accessible. Let $L(\mathfrak{a}, r)$ and $A(\mathfrak{a}, r)$ denote the length of $\gamma(\mathfrak{a}, r)$ and the area of $U(\mathfrak{a}, r)$ respectively $(\mathfrak{a} \in \mathfrak{A}, 0 < r < r_0)$. We readily see that $A(\mathfrak{a}, r)$ is represented by the Lebesgue integral

(2)
$$A(\mathfrak{a}, r) = \int_0^r L(\mathfrak{a}, r) dr.$$

Finally, we say that a proposition $P(\mathfrak{a})$ concerning a point $\mathfrak{a} \in \mathfrak{A}$ holds almost everywhere (abbreviated a.e.) provided $\{\theta: P(\mathfrak{a}_{\theta}) \text{ is false}\}$ is a set of measure zero. Note that this definition is independent of f.

THEOREM 1.

$$\limsup_{r\to 0} \frac{A(\mathfrak{a}, r)}{\pi r^2} \ge \frac{1}{2} \quad \text{a.e.}$$

An immediate consequence of Theorem 1 is that

Received December 2, 1968. Alfred P. Sloan Research Fellow. Research also supported by the National Science Foundation (N.S.F. grant GP-6538).