METRIC CONDITIONS FOR RATIONAL APPROXIMATION

By John Garnett

1. Introduction. Let X be a compact subset of the complex plane, and let A(X) be the algebra of continuous functions which are analytic on X^0 , the interior of X. Denote by R(X) the uniformly closed subalgebra of A(X) generated by those functions analytic on a neighborhood of X. We regard each function as extended to S^2 , the Riemann sphere. We seek metric conditions which imply that a function in A(X) lies in R(X). Now the boundary of X decomposes into the *outer boundary*, which is the union of the boundaries of the complementary components, and the *inner boundary*, which is the relative complement of the outer boundary. Let E denote the inner boundary of X. In light of the theorem of Vitushkin [8], [9] asserting that the functions in A(X) analytic on the outer boundary of X are uniformly dense in A(X), we only seek conditions involving the inner boundary E. Given here are three conditions for approximation: one depending on E and X, one on E alone, and one on E and the function f.

2. A condition on E and X. Let $V_{\delta} = V_{\delta}(E) = \{z : \operatorname{dist}(z, E) < \delta\}$, and let m denote the area measure.

THEOREM 2.1. Assume X is a compact set with inner boundary E, and

(2.1)
$$\lim_{\delta \to 0} \frac{m(V_{\delta} \cap X)}{\delta^2} < \infty$$

Then R(X) = A(X).

Proof. Write

(2.2)
$$M = \lim_{\delta \to 0} \frac{m(V_{\delta} \cap X)}{\delta^2} \cdot$$

Let $f \in A(X)$ and $\epsilon > 0$. Since $m(\overline{E}) = 0$, we have $R(\overline{E}) = A(\overline{E})$ by the theorem of Hartogs and Rosenthal [9], so that there is a function g holomorphic in \overline{E} with $|f(z) - g(z)| < \epsilon$ on \overline{E} . Choose δ such that

- (i) $|f(z) g(z)| < \epsilon$ on $V_{2\delta}$ (ii) $m(V_{2\delta} \cap X) < 5M\delta^2$
- (iii) g is analytic on $V_{2\delta}$.

Received November 13, 1968. Partially supported by the Air Force Office of Scientific Research, Office of Aerospace Research, under Contract No. F44620-67-6-0029, and by NSF Grant GP-8622.